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Abstract

Transient plane wave theory for anisotropic, in particular transversely isotropic lossless materials is formulated and evaluated
as a coordinate-free approach leading to comparatively simple analytical expressions for phase wave speeds, polarization vectors
and energy wave speeds. The application to the practical problem of nondestructive testing of dissimilar welds yields a concise
physical interpretation of the output of numerical simulation codes.
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1. Introduction

In general, primary circuit pipe welds of nuclear power plants are so-called dissimilar welds consisting of
austenitic steel embedded in ferritic steel.Fig. 1 shows a typical polished cut of such a weld: Due to the welding
process a granular structure is created, which makes the weld an anisotropic medium for elastic waves; typically,
the weld is often buffered to the isotropic ferritic pipe material by a layer of austenitic steel exhibiting a horizontal
grain orientation, and an austenitic cladding of the interior of the pipe with a vertical grain orientation makes the
embedding of the weld even more “dissimilar”.

Therefore, the detection of cracks growing from the interior pipe wall into the weld region through the excitation of
impulsive elastic waves in the ultrasonic frequency regime (∼2 MHz) from the exterior pipe wall definitely requires
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Fig. 1. Polished cut of a dissimilar weld (left) and zero-order computer model for elastic wave propagation (right: vertical homogeneous grain
orientation).

the interpretation of recorded transient signals of considerable complexity. Of course, elastic wave propagation
modelingcan help to understand the physical contents of such signals. Unfortunately, even for the zero-order
computer model of an austenitic weld as it is displayed inFig. 1—homogeneous weld material with transverse
isotropy embedded in a homogeneous isotropic material—the required Green functions (tensors) to formulate
transducer aperture radiation as well as scattering analytically[1] are only available as rather complicated integral
representations[2]. On the other hand, numerical methods operating directly on the underlying elastodynamic
governing equations serve as an excellent modeling tool not only to predict transient recorded signals but to reveal
all physical aspects of elastic wave radiation, propagation and scattering: The optically opaque weld is made
transparent.Fig. 2gives an example as it is obtained with the two-dimensional version of the Elastodynamic Finite
Integration Technique (EFIT:[3–8]) for the zero-order geometry ofFig. 1. If the same geometry, yet under the
assumption of anisotropicweld material—polycrystalline austenitic steel with approximately the same material
as ferritic steel—is similarly investigated (seeFig. 3), the mere optical comparison of the time snap shots of both
figures reveals the “strange” refraction effects at the surface separating the anisotropic (transversely isotropic) weld
from the isotropic ferritic embedding material; a potential crack growing from the interior pipe wall along the right
boundary of the weld would not be hit by the refracted wave front as it would be true for an isotropic weld material.
Hence, modeling is mandatory to design an ultrasonic experiment correctly, but the question is whether one has to
rely on complicated analytical and/or extensive numerical modeling or if simpler tools are at hand for an initial guess
of what would happen in an environment as displayed inFig. 1. As a matter of fact, comparatively simple plane wave
theory can help to predict the output of an ultrasonic experiment if the focus is on transient plane wave energy rays. It
turns out that explicit analytical formulas for energy wave speeds and directions in transversely isotropic materials
are immediately at hand (and simpler than those previously published:[9]) if one disregards the definition of a
group velocity in favor of the energy velocity, and, in particular, if one concentrates on a coordinate-free approach
(consequently applied to electromagnetic waves by Chen[10]) instead of the conventional indicial notation together
with the summation convention[1,11–13]. The latter has the disadvantage that equations, in particular if they contain
the Levi-Civit̀aεijk-tensor, must be read very carefully, whereas a coordinate-free notation leads to a perfectly clear
and immediately visible mathematical representation of the underlying physics. Yet the most convincing argument
for a coordinate-free calculus is the straightforward computation of determinants, adjoints and inverses of tensors as
provided by H.C. Chen[10] (compareSection 2.3). Of course, if it comes to numerical calculations, the introduction
of coordinates cannot be avoided.
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Fig. 2. 2D-EFIT modeling: radiation, propagation and scattering of a 45◦-shear-vertical elastic wave: austenitic weld material is assumed to be
transversely isotropic with the lines inFig. 1 indicating the granular preference direction; the bar on top of the exterior pipe wall indicates the
size and the location of the exciting aperture (ferritic steel: pressure wave speed 5900 m/s, shear wave speed 3200 m/s, mass density 7700 kg/m3;
for Lamé constants of transversely isotropic austenitic steel compareFig. 4).
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Fig. 3. 2D-EFIT modeling: radiation, propagation and scattering of a 45◦-shear-vertical elastic wave: austenitic weld material is assumed to
be polycrystalline isotropic; the bar on top of the exterior pipe wall indicates the size and the location of the exciting aperture (polycrystalline
austenitic steel: pressure wave speed 5600 m/s, shear wave speed 3100 m/s, mass density 7900 kg/m3).
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2. Elastic plane waves in transversely isotropic lossless materials

2.1. Governing and constitutive equations; wave equation

The governing equations of linear elastodynamics—Newton-Cauchy equation of motion, deformation rate
equation—for the field quantitiesj (R, t) (momentum density vector),T(R, t) (second rank stress tensor),S(R, t)
(second rank strain tensor),v(R, t) (particle velocity vector) and the sourcesf (R, t) (volume force density vector)
andh(R, t) (second rank injected deformation rate tensor)—R is the vector of position andt the time—read1 (for
a precise and consistent derivation see[1])

∂j (R, t)

∂t
= ∇ · T(R, t) + f (R, t), (1)

∂S(R, t)

∂t
= I+ : ∇v(R, t) + h(R, t), (2)

each dot stands for the contraction of adjacent indices of the respective vectors (one underline) and (second rank)
tensors (two underlines); the forth rank tensorI+ yields the symmetric part of a second rank tensor (in this case the

gradient dyadic of the particle velocity vector) under double contraction. These governing equationsmustbe com-
plemented by constitutive equations relating the field quantities; these read for linear time-invariant instantaneously
and locally reacting homogeneous anisotropic materials[1]:

j (R, t) = ρv(R, t), (3)

T(R, t) = c : S(R, t), (4)

thus defining the scalar mass densityρ and the forth rank stiffness tensorc, which, due to the symmetry ofS (by

definition) andT (by conservation of angular momentum) together with conservation of energy obeys the symmetries

c1234 = c2134 = c1243 = c3412, where the upper indicial notation accounts for the permutational replacement of

tensor elements. With these constitutive equations we readily arrive at the wave equation

∇ · c : ∇v(R, t) − ρ
∂2v(R, t)

∂t2
= − f (R, t)

∂t
− ∇ · c : h(R, t), (5)

which turns into a homogeneous time-harmonic reduced wave equation for the Fourier-transformed particle dis-
placement

∇ · c : ∇u(R, ω) + ρω2u(R, ω) = 0, (6)

if we put sources equal to zero and define

v(R, ω) =
∫ ∞

−∞
v(R, t)ejωtdω = −jωu(R, ω), (7)

j = √−1 being the imaginary unit.

1 Note: Considering both kinds of sources is very helpful for the derivation and interpretation of an elastodynamic Huygens-type representation
and extinction theorem[14].
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2.2. Phase and energy wave speeds of time-harmonic plane waves in lossless anisotropic materials

2.2.1. Homogeneous plane waves
In the time-harmonic plane wave ansatz—u(ω) representing the Fourier-spectrum of the arbitrary (causal) time

domain impulseu(t)—

u(R, ω) =⇒ u(R, ω, k̂) = u(ω)û(k̂)ej(k̂·R/c(k̂))ω, (8)

involving the prescribed unit-vectork̂ of the phase propagation direction—planes of constant phase are orthogonal
to k̂—we have to determine the phase speedc(k̂) and the polarization unit-vectorsû(k̂). They come as solutions of
the eigenvalue problem

D(k̂) · û(k̂) = c2(k̂)û(k̂), (9)

for the real-symmetric positive-definite Kelvin–Christoffel tensor

D(k̂) = 1

ρ
k̂ · c · k̂, (10)

where the square of the phase speed appears as eigenvalue. Anisotropic materials are characterized by a direction
dependence of the phase speed, and, moreover, by a direction dependence of the energy wave speed together with
the non-coincidence of phase and energy propagation directions. Note: It is much more intuitive to use the energy
wave speed instead of the group velocity, because the latter one can only be defined approximately for wave packets
under certain assumptions whereas the first one makes always sense; in particular, explicit expressions for the
energy speed are available for transversely isotropic materials which are considerably simpler than those for the
group velocity[9].

The energy wave speed is defined through

cE(k̂) = �SK(R, ω, k̂)

〈wel(R, t, k̂)〉 , (11)

whereSK is the complex elastodynamic Poynting-vector and〈wel(R, t, k̂)〉 the time averaged elastodynamic energy
density of time harmonic plane waves:

SK(R, ω, k̂) = 1
2jω u(R, ω, k̂) · T∗(R, ω, k̂), (12)

〈wel(R, t, k̂)〉 = 1
4ρω2u(R, ω, k̂) · u∗(R, ω, k̂) + 1

4S(R, ω, k̂) : c : S∗(R, ω, k̂), (13)

the star indicates complex conjugate values of Fourier-spectra. For homogeneous plane waves and

S(R, ω, k̂) = j
ω

c(k̂)
I+ : k̂ u(R, ω, k̂), (14)

we obtain the result

cE(k̂) = 1

ρc(k̂)
c

... k̂ û(k̂)û(k̂). (15)

Defining the slowness vector

s(k̂) = 1

c(k̂)
k̂, (16)
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and the ray vector

l(k̂) = cE(k̂)

ω
, (17)

one finds that the ray vector is always orthogonal to the slowness surface and the slowness vector is always orthogonal
to the ray surface.

If it is physically reasonable to define a group velocitycg(k̂) in terms of

cg(k̂) = ∇kω(k), (18)

with

k = ω

c(k̂)
k̂, (19)

the computation of this expression yields always the same result as (15). This is readily realized if the eigenvalue
equation (9) is rewritten as—I is the second rank unit-tensor

[k · c · k − ρω2(k)I ] · û(k̂) = 0, (20)

and the∇k -gradient of it is taken:

∇k{k · c · k − ρω2(k)I ] · û(k̂)} = {∇k [k · c · k − ρω2(k)I ]} · û(k) + [∇k û(k)] · [k · c · k − ρω2(k)I ]21

= 2[c · k − ρω(k)∇kω(k)I ] · û(k) + [∇k û(k̂)] · [k · c · k − ρω2(k)I ] = 0,

(21)

we have used∇kk = I , ∇k (k · c · k) = 2c · k and the symmetries ofc. Contracting (21) from the right witĥu(k̂)

and recognizing again the eigenvalue equation results in

c
.
: kû(k̂)û(k̂) = ρω(k)∇kω(k), (22)

and, hence, in

cE(k̂) = cg(k̂). (23)

Note: Even though irrelevant for the final result, thek̂-dependence of̂u(k̂) must be considered taking the∇k -gradient
in the evaluation of (21); this is often disregarded in the literature (for instance:[13]).

2.2.2. Inhomogeneous plane waves
If we allow for complex phase vectors

k = �k + j�k, (24)

in the plane wave ansatz (8), we get

u(R, ω, k) = u(ω)ej�k·Re−�k·Rû(k), (25)

which is called aninhomogeneousplane wave if�k and�k are not parallel; with our sign in the kernel of the
Fourier transform, the phase of this wave propagates into�k-direction, and it decays exponentially in the half-
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space�k · R > 0. The determinant of the wave tensork · c · k − ρω2I in (20) is only zero if its realandimaginary

part is zero for each wave mode (pressure and shear), yielding

�k · �k = 0, (26)

for isotropic losslessmaterials, i.e. a potential exponential decay of a plane wave in such a material is always
orthogonal to thephasepropagation direction, and, hence, orthogonal to the phase velocity vector (as it is also true
for electromagnetic waves:[10])

c(k) = ω

|�k| �̂k. (27)

Of course, foranisotropic losslessmaterials one expects, that the orthogonal evanescence of inhomogeneous plane
waves is with regard to the energy velocity vector. To prove this, we switch to the (complex) slowness vector
s= �s+ j�s= k/ω and find

SK(R, ω, s) = 1
2ω2|u(ω)|2e−2ω�s·Rû(s) · c : s∗û∗(s), (28)

〈w(R, t, s)〉 = 1
4ω2|u(ω)|2e−2ω�s·R[ρ + sû(s) : c : s∗û∗(s)], (29)

from (12) and (13), where we have used the hermitian normalization condition

û(s) · û∗(s) = 1, (30)

(29) implies that time averaged potential and kinetic energy densities are no longer equal forinhomogeneous
time-harmonic plane waves (as it is true for homogeneous plane waves). According to (11) we obtain

cE(s) =
2�{c ... s∗û∗(s)û(s)}

ρ + sû(s) : c : s∗û∗(s)
. (31)

Calculating

�{c .
: s∗û∗û} = c

.
: (�s�û�û + �s�û�û + �s�û�û − �s�û�û), (32)

explicitly in terms of the real and imaginary part ofs, we find

�s · �{c .
: s∗û∗û} = �s · c .

: (�s�û�û + �s�û�û), (33)

on behalf of the symmetries ofc; we expect the right-hand side of (33) to be zero. This is recognized, if we conclude

�{s∗ · c .
: s∗û∗û} = 0, (34)

from the dot-multiplication of the complex conjugate of the eigenvalue equation (20) withû(s) exploiting (30);
again, based on the symmetries ofc, we find explicitly

�{s∗ · c .
: s∗û∗û} = 2�s · c .

: (�s�û�û + �s�û�û), (35)

and, hence,

�s · cE(s) = 0. (36)
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2.3. Transversely isotropic materials

2.3.1. Phase wave speeds
Transverse isotropy is characterized by a unit-vector preference directionâ—the grain orientation in an austenitic

weld—along which the material is anistropic whereas orthogonal toâ it is isotropic. The corresponding stiffness
tensor, which involves five Laḿe constantsλ⊥, λ‖, µ⊥, µ‖, ν, reads[9]

ctriso = λ⊥I δ + 2µ⊥I+ + α1â â â â+ α2(I â â+ â â I ) + α3(I â â+ â â I )1324+ α3(I â â+ â â I )1342, (37)

where

α1 = λ⊥ + 2µ⊥ + λ‖ + 2µ‖ − 2(ν + 2µ‖), (38)

α2 = ν − λ⊥, (39)

α3 = µ‖ − µ⊥, (40)

I δ = I I has the propertyI δ : A = A : I δ = AtraceA. The wave tensor in (20) immediately takes the form

W(k̂, c2) = k̂ · c · k̂ − ρ c2(k̂)I = γ1I + γ2k̂ k̂ + γ3â â+ γ4(k̂ â+ â k̂), (41)

where

γ1 = µ⊥ + (µ‖ − µ⊥)(k̂ · â)2 − ρc2(k̂), (42)

γ2 = λ⊥ + µ⊥, (43)

γ3 = (λ⊥ + 2µ⊥ + λ‖ − 2µ‖ − 2ν)(k̂ · â)2 + µ‖ − µ⊥, (44)

γ4 = (µ‖ − µ⊥ + ν − λ⊥)k̂ · â. (45)

The first task is to compute thec2(k̂)-eigenvalues, which requires the computation of the determinant ofW(k̂, c2);
with the help of Chen’s formulas[10] we find

detW(k̂, c2) = γ1{γ2
1 + γ1(γ2 + γ3 + 2γ4k̂ · â) + (γ2γ3 − γ2

4)[1 − (k̂ · â)2]}, (46)

hence, the first eigenvalue is immediately obtained throughγ1 = 0 to yield

c2
SH(k̂) = µ⊥ + (µ‖ − µ⊥)(k̂ · â)2

ρ
, (47)

where the notation “SH” for shear horizontal anticipates the direction of the corresponding eigenvector: It is hori-
zontal with regard to a plane being orthogonal to thek̂ â-plane, and therefore orthogonal tok̂ identifying the wave
with the phase speed (47) as a transverse shear wave. The second and third eigenvalues come as a solution of the
bracketed expression in (46), which is a quadratic equation inγ1:

c2
qP,qSV(k̂) = c2

SH(k̂) − γ
qP,qSV
1

ρ
, (48)

= c2
SH(k̂) + 1/2(γ2 + γ3 + 2γ4k̂ · â)

ρ
±

1/2
√

(γ2 + γ3 + 2γ4 k̂ · â)2 − 4(γ2γ3 − γ2
4)[1 − (k̂ · â)2]

ρ
. (49)

Again, the notation anticipates the direction of the corresponding polarization vectors: They are no longer lon-
gitudinal nor transverse with regard tok̂, whence the “q” for quasi appears; in addition, for zero anisotropy one
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Fig. 4. SlownessessSH(k̂), sqSV(k̂) andsqP(k̂) for austenitic steel:λ⊥ + 2µ⊥ = 216 GPa,µ⊥ = 129 GPa,λ‖ + 2µ‖ = 216 GPa,µ‖ = 129 GPa,
ν = 145 GPa;ρ = 8100 kg/m3.

eigenvalue refers to a pressure (P) and the other to a shear vertical (SV) wave, and this results in qP- and qSV-wave
modes to complement the SH-mode. InFig. 4 we have displayed thêk-dependence of the slowness magnitudes
sqP(k̂), sSH(k̂), sqSV(k̂) in thek̂ â-plane for an austenitic steel with the Lamé constants and density given in the figure
caption; these diagrams are rotationally symmetric with respect toâ. In general we havesSH,qSV(k̂) < sqP(k̂) (for
exceptions see[13]); hence, “quasi” stands indeed for the polarization vectors (and the pressure and shear physics)
and not for primary and secondary waves.

2.3.2. Polarization vectors
To compute the energy velocity we need the polarization vectors, i.e. the eigenvectors corresponding to each

eigenvalue. We immediately observe thatW(k̂, c2
SH) is a sum of two dyadic products, and therefore, this tensor is

planar[10]; as a consequence, its adjoint according to

adjW triso(k̂, c2
SH) = (γ2γ3 − γ2

4)(k̂ × â)(k̂ × â), (50)

is linear and the eigenvectorûSH(k̂) is proportional to the left vector of the dyadic product (50); after normalization
we obtain:

ûSH(k̂) = k̂ × â√
1 − (k̂ · â)2

, (51)

thus confirming our anticipation thatûSH is orthogonal to thêk â-plane; yet this does not immediately explain
the notation “SH” for shear horizontal: It only becomes reasonable if a reference plane, i.e. a specimen surface,
is defined and if̂k andâ span a plane orthogonal to it. The same is true for the notation “qSV” for shear vertical
(Figs. 5 and 6).

The special casêk⊥â is contained in (50), but not̂k‖â, because

adjW triso(k̂‖â, c2
SH) = 0, (52)
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Fig. 5. Energy wave speedscESH(k̂), cEqSV(k̂) andcEqP(k̂) for austenitic steel:λ⊥ + 2µ⊥ = 216 GPa,µ⊥ = 129 GPa,λ‖ + 2µ‖ = 216 GPa,
µ‖ = 129 GPa,ν = 145 GPa;ρ = 8100 kg/m3.

Fig. 6. Excitation of two qSV-wave modes in an austenitic weld by a 45◦-SV transducer.

is the null tensor; as a consequenceW triso(k̂‖â, c2
SH) is linear:

W triso(k̂‖â, c2
SH) = (γ2 + γ3 + 2γ4)â â, (53)

therefore, the eigenvectorûSH(k̂‖â) is proportional to any vector orthogonal to the right vectorâ of the dyadic (53).
Knowing that the Kelvin–Christoffel tensor is real-symmetric, we conclude that the remaining two eigenvectors

must be orthogonal tôuSH and orthogonal to each other. This requires

ûqP,qSV(k̂) ∼ αqP,qSVk̂ + βqP,qSVâ, (54)

we determineβqP,qSV/αqP,qSV inserting (54) into the eigenvalue equation which results in a homogeneous system
of equations whose determinant is found to be zero as a requirement for a non-trivial solution to exist. We find

βqP,qSV

αqP,qSV

def= γqP,qSV = −γ
qP,qSV
1 + γ2 + γ4k̂ · â

γ4 + γ2 k̂ · â = −
ρc2

SH − ρc2
qP,qSV + γ2 + γ4k̂ · â

(ν + µ‖)k̂ · â , (55)
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and therefore

ûqP,qSV(k̂)

=
k̂ −

[
1/2(γ2 − γ3) ∓ 1/2

√
(γ2 + γ3 + 2γ4k̂ · â)2 − 4(γ2γ3 − γ2

4)[1 − (k̂ · â)2]

]
â/(γ4 + γ2 k̂ · â)

UqP,qSV

(56)

with

UqP,qSV = |k̂ + γqP,qSVâ| =
√

1 + γ2
qP,qSV + 2γqP,qSVk̂ · â. (57)

A short calculation proves indeed that

ûqP(k̂) · ûqSV(k̂) = 0. (58)

For the special casêk · â = 0 we haveγ4 = 0, and, hence, (56) cannot be used; but then we find

adjW triso(k̂⊥â, c2
qP) = γ2(γ2 − γ3)k̂ k̂, (59)

adjW triso(k̂⊥â, c2
qSV) = γ3(γ3 − γ2)â â, (60)

yielding the result that̂uqP(k̂⊥â) is parallel to k̂ and ûqSV(k̂⊥â) parallel to â. For the other special case

k̂ × â = 0, k̂ and â are not linearly independent, and, therefore, our derivation does not hold. Yet we find that
adjW triso(k̂‖â, c2

SH,qSV) is the null tensor with the consequence that

W triso(k̂‖â, c2
SH,qSV) = (γ2 + γ3 + 2γ4)â â, (61)

is linear and̂uSH,qSV(k̂ â) orthogonal to the right factor̂a: We choosêuSH andûqSV orthogonal to each other as we
do it for the case of equal shear eigenvalues in isotropic materials. In addition we have

adjW triso(k̂‖â, c2
qP) ∼ â â, (62)

therefore,̂uqP(k̂‖â) is parallel to the left vector̂a.
Note that the explicit coordinate-free eigenvector expressions given here turn out to be considerably simpler than

those given in the literature[9], where Chen’s formulas ([10]: Problem 1.12) for the eigenvectors of a biaxial matrix
are used.

2.3.3. Energy wave speeds
With the stiffness tensor for transversely isotropic materials we find the general expression

cE(k̂) = 1

ρ c(k̂)
[λ⊥k̂ · û û + µ⊥k̂ + µ⊥k̂ · û û + α1k̂ · â(û · â)2â+ α2(k̂ · â â · û û + k̂ · û û · â â)

+ α3(k̂ · â â · û û + â · û û · k̂ â+ û · â â · û k̂ + k̂ · â â)], (63)

for the energy wave speed. Specializing to the three different wave modes we get

cESH(k̂) = µ⊥k̂ + (µ‖ − µ⊥)k̂ · â â
ρ cSH(k̂)

, (64)
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ρ cqP,qSV(k̂)cEqP,qSV(k̂) =
{
µ⊥ + α3ûqP,qSV · â â · ûqP,qSV

+ 1

UqP,qSV
[(λ⊥ + µ⊥)k̂ · ûqP,qSV + (α2 + α3)k̂ · â â · ûqP,qSV]

}
k̂

+
{

(α1k̂ · â â · ûqP,qSV + α2k̂ · ûqP,qSV)ûqP,qSV · â+ α3(k̂ · â

+ k̂ · ûqP,qSVûqP,qSV · â) + γqP,qSV

UqP,qSV
[(λ⊥ + µ⊥)k̂ · ûqP,qSV

+ (α2 + α3)k̂ · â â · ûqP,qSV]

}
â. (65)

To plot energy velocity diagrams (seeFig. 5) in a manner similar to the slowness diagrams we choosek̂ and plot
|cESH,qP,qSV(k̂)| in the direction of the unit-ray-vectorl̂(k̂) = ĉESH,qP,qSV(k̂); due to the potential non-uniqueness

of k̂(l̂) the typical cusps in thecEqSV(l̂) diagram appear[16]. Interesting enough: The geometrical shapes of the
plane wave energy velocity diagramsare identical to the transient wave fronts emanating from point sources, i.e.
to the transient Huygens-type elementary waves, and, hence,wave fronts of transient Green functions, yet without
the vector/tensor and amplitude information of the latter[15,16,3,6]. Nevertheless, this gives rise to a point source
synthesis of transducer radiation fields[17] as well as an imaging scheme based on time domain backpropagation
[4,14].

As a consequence, it is absolutely inappropriate to take the inverse Fourier transform of the time harmonic
plane wave (8) to arrive at a transient plane wave; in contrast, one has to define atransient plane wave energy ray
(propagating into positivêl-direction) according to

u(R, t, l̂) = U

(
t − l̂ · R

cE(l̂)

)
û(l̂), (66)

whereU(t) is the inverse Fourier transform ofu(ω).

3. Transmission of transient plane wave energy rays at the plane boundary separating a transversely
isotropic from an isotropic half-space

We discuss this topic for the special case of SV-wave incidence from the isotropic half-space because of its
relevance for the weld example inFig. 2. As a matter of fact, we “insert” inFig. 6 thesqSV(k̂)-slowness diagram
of Fig. 4 into the zero-order computer model weld geometry ofFig. 1 together with the circularsSV-diagram for
the isotropic half-space. The slowness vectorsiSV of the incident wave determines the slowness vectorsrSV of the
reflected SV-wave via phase matching in the interface between the ferritic and the austenitic steel, thus defining
the (dashed) phase matching line for the transmitted shear wave: It has four intersections with the corresponding
qSV-slowness diagram, two of which lead to non-evanescent energy velocity directionsl̂1,2 = ĉtqSV1,2

pointinginto
the transversely isotropic half-space and leading totwo transmitted transient plane qSVt1,2

-wave energy rays (the
mode-converted transmitted qP-wave is already way beyond evanescence in the sense of (36)):

utqSV1,2
(R, t, l̂1,2) = U

(
t − l̂1,2 · R

cEtqSV1,2
(l̂1,2)

)
ûtqSV1,2

(l̂1,2). (67)
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Fig. 7. 2D-EFIT simulation of elastic wave propagation in an austenitic weld: the occurrence of two transmitted qSV-waves is interpreted in
terms of transient plane wave energy rays.

It turns out that this result nicely interprets the numerically obtained wave front snap-shots ofFig. 2, as it is overlayed
on three selected snap-shots (Fig. 7): A quick estimation on how ultrasonic pulsed rays propagate in an austenitic
weld becomes possible.

4. Conclusions

Analytic transient plane wave theory is often helpful to interpret the output of numerical codes for complicated
elastic wave propagation environments.
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