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Abstract

The theory of acoustic, electromagnetic and elastic wave fields in terms of governing equations, plane waves, spherical waves (Green
functions) and scattered field representations is discussed under common aspects leading to a unified derivation of modeling and imaging
algorithms. The latter require a linearization of the inverse scattering problem. Applications referring to the location and assessment of
tendon ducts in concrete are presented utilizing synthetic as well as experimental data culminating in a real-life example for data taken
from a bridge.
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1. Introduction

We consider the problem to locate and assess tendon
ducts in concrete as a specific task in nondestructive testing
of concrete. As an example, Fig. 1 shows the making of a
test specimen: A tendon duct has been placed below a steel
reinforcement and the picture has been taken while the
concrete is poured in. Obviously, concrete principally
allows for the propagation of electromagnetic as well as
acousto-elastic waves, and, hence, both wave modes can
be utilized to solve the task locating the duct below the
reinforcement and assessing its integrity, i.e., identifying
grouting defects. Electromagnetic waves face the problem
of being shielded by the steel grid and the duct itself
whereas elastic waves are strongly affected by the inhomo-
geneity of the concrete composition. Hence, it is advisable
to investigate the wave propagation in terms of a paramet-
ric study applying numerical codes to solve the respective
underlying wave equations; the similarity of the latter then
suggests the formulation of a unified theory of inversion
and imaging.
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2. Electromagnetic and acousto-elastic waves

2.1. Governing equations

2.1.1. Electromagnetic waves
As it is well-known, the propagation of electromagnetic

waves is predicted and governed by Maxwell’s curl equa-
tions [1]

oDðR; tÞ
ot

¼ $�HðR; tÞ � JeðR; tÞ; ð2:1Þ

oBðR; tÞ
ot

¼� $� EðR; tÞ � JmðR; tÞ ð2:2Þ

complemented by compatibility equations

$ �DðR; tÞ ¼ .eðR; tÞ; ð2:3Þ
$ � BðR; tÞ ¼ .mðR; tÞ. ð2:4Þ

Time derivatives of electric and magnetic flux densities—
vectors D(R, t) and B(R, t)—at a certain point in space
characterized by the vector of position R yield curl densi-
ties in terms of the cross(vector)-product of the del-opera-
tor $ with the respective field-strengths H(R, t) (magnetic
field strength) and E(R, t) (electric field strength); it is
understood that the electromagnetic field is generated by
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Fig. 1. (Left) Making of a test specimen: tendon duct below reinforcement embedded in concrete. (Right) Respective computer model of a test specimen
for electromagnetic wave simulations.
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given sources: electric and (fictitious) magnetic current den-
sities Je(R, t), Jm(R, t) whose pertinent charge densities
.e(R, t), .m(R, t) define the source densities of the fluxes in
terms of the scalar (dot) product with $.

2.1.2. Elastic waves

In solids, given (vector) force densities f(R, t) and (sym-
metric second rank tensor) deformation rate densities
h(R, t) act as sources of elastic waves, which are character-
ized by the field quantities: j(R, t) (vector momentum
density), T(R, t) (symmetric second rank stress tensor),
S(R, t) (symmetric second rank deformation tensor) and
v(R, t) (vector particle velocity). Within a linearized theory
of elasticity [1] these waves are governed by Newton–Cau-
chy’s law of momentum conservation as well as the defini-
tion of the deformation rate through the symmetric part of
the gradient dyadic $vðR; tÞ ðIþ denoting the fourth rank

symmetrization tensor acting on $v by a double contrac-
tion ‘‘:’’)

ojðR; tÞ
ot

¼ $ � TðR; tÞ þ fðR; tÞ; ð2:5Þ

oSðR; tÞ
ot

¼ Iþ : $vðR; tÞ þ hðR; tÞ. ð2:6Þ
2.1.3. Acoustic waves

In case of isotropic stresses being characterized by a sca-
lar pressure p(R, t) through T(R, t) = �p(R, t)I—I denoting
the second rank unit-tensor—the governing Eqs. (2.5) and
(2.6) of elastodynamics reduce to the governing equations
of (linear) acoustics:

ojðR; tÞ
ot

¼ �$pðR; tÞ þ fðR; tÞ; ð2:7Þ

oSðR; tÞ
ot

¼ $ � vðR; tÞ þ hðR; tÞ; ð2:8Þ

the second equation resulting from the trace of (2.6) with
S(R, t) = trace S(R, t), h(R, t) = trace h(R, t), thus defining
the dilatation S(R, t).

The formal comparison of the three systems of equa-
tions governing the propagation of wave fields exhibits a
considerable similarity: First-order time derivatives of
fields are related to combinations of first-order spatial
derivatives in terms of curl, gradient and divergence,
whence the particular spatial structure and polarization
of the respective wave fields originate from. Yet the similar-
ity gives rise to a unified treatment of forward propagation
modeling and algorithmic inverse scattering, the two chal-
lenges to be met in nondestructive testing of concrete.
Before entering this subject of modeling and inversion the
three systems have to be complemented by constitutive
equations relating field quantities in such a way that Eqs.
(2.1) and (2.2), (2.5) and (2.6), (2.7) and (2.8) can be com-
bined to derive explicit wave equations.

2.2. Constitutive equations

Constitutive equations do not follow from the governing
equations by mere calculus, they have to be based on the
physics of matter without violating the governing equa-
tions and their immediate consequences like conservation
of momentum and energy together with physical principles
like causality [1,2]. In the present context we concentrate
on the simplest version of constitutive relations implying
linearity, time invariance, instantaneous and local reaction
as well as isotropy.

For electromagnetic wave fields this limitation defines
the—inhomogeneous—permittivity �r(R) and the perme-
ability lr(R):

DðR; tÞ ¼ �0�rðRÞEðR; tÞ; ð2:9Þ
BðR; tÞ ¼ l0lrðRÞHðR; tÞ; ð2:10Þ

where �0 and l0 denote the electric and magnetic field con-
stants (in contrast to acousto-elastic waves electromagnetic
waves travel through vacuum with �r(R) = 1,lr(R) = 1).

For elastic and acoustic waves the momentum density is
simply related to the particle velocity through the mass
density q(R):

jðR; tÞ ¼ qðRÞvðR; tÞ. ð2:11Þ

In case the material does not sustain shear stresses the
acoustic approximation (2.7), (2.8) holds, and the relation
between pressure and dilatation introduces the (adiabatic)
compressibility j(R):

SðR; tÞ ¼ �jðRÞpðR; tÞ. ð2:12Þ
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Of course, in the more general case of linear elasticity a
relation between T(R, t) and S(R, t) has to be established
which comes as the Cauchy–Hooke law

SðR; tÞ ¼ sðRÞ : TðR; tÞ ð2:13Þ

introducing the compliance tensor sðRÞ of rank four. Due
to the symmetry of S and T (by virtue of definition and
angular momentum conservation) and as a consequence
of energy conservation the compliance tensor (for instanta-
neously reacting materials) has at most 21 independent
entries (out of the original 81). A further reduction to only
two parameters—the Lam constants k(R) and l(R)—is
observed for isotropic materials yielding the representation

cðRÞ ¼ kðRÞI Iþ 2lðRÞIþ ð2:14Þ

for the stiffness tensor as the inverse of the compliance ten-
sor ðs : c ¼ c : s ¼ IþÞ.
2.3. Fundamental solutions of wave equations

2.3.1. Wave equations for homogeneous materials

Accepting (2.11) and (2.12) for homogeneous materials—
no R-dependence of q and j—the simplest, while scalar,
wave equation is obtained for the scalar pressure of acous-
tic waves if we take another time derivative of (2.8) and
insert (2.7):

$ � $pðR; tÞ � qj
o2pðR; tÞ

ot2

¼ $ � fðR; tÞ þ q
ohðR; tÞ

ot
. ð2:15Þ

Starting in the way with (2.7) and inserting (2.8) results
in

$$ � vðR; tÞ � qj
o2vðR; tÞ

ot2
¼ �j

ofðR; tÞ
ot

� $hðR; tÞ. ð2:16Þ

Notice: $ � $ ¼ D is the Laplace operator, and $$ is a
dyadic product of the del-operator with itself.

For electromagnetic waves a similar procedure yields

$� $� EðR; tÞ þ �0�rl0lr
o

2EðR; tÞ
ot2

¼ �l0lr
oJeðR; tÞ

ot
� $� JmðR; tÞ. ð2:17Þ

Finally, for elastic waves, Eq. (2.16) has to be aug-
mented by a double-curl shear term:

ðkþ 2lÞ$$ � vðR; tÞ � l$� $� vðR; tÞ

� q
o2vðR; tÞ

ot2
¼ � ofðR; tÞ

ot
� $ � c : hðR; tÞ. ð2:18Þ
2.3.2. Plane wave solutions of the homogeneous wave

equations

With no sources present the resulting homogeneous
wave equations have—among others—plane wave solu-
tions. The acoustic plane pressure wave emanating from
(2.15) reads

pðR; tÞ ¼ p0 t � k̂ � R
c

 !
. ð2:19Þ

Here, c ¼ 1ffiffiffiffi
qj
p denotes the (phase) wave speed, and p0(t) is

an arbitrary time function. The plane wave has constant
amplitude and phase in all planes perpendicular to the
propagation direction given by the unit-vector k̂. From
the computation of the gradient in (2.7) we conclude that
the pertinent vector v(R, t) has the direction of k̂, which
identifies a plane acoustic wave as being longitudinally
polarized in the particle velocity. The mathematical origin
is the appearance of the $$-operator in (2.16).

In contrast, plane electromagnetic waves are transverse
waves, which goes back to the double curl-operator in
(2.17). As plane wave solution of (2.17) we obtain

EðR; tÞ ¼ E0 t � k̂ � R
c

 !bE0 ð2:20Þ

with the polarization vector bE0 being orthogonal to k̂ be-
cause k̂ � bE0 ¼ 0 originating from the zero divergence of
E(R, t) in free space; again, E0(t) is an arbitrary time func-
tion, which propagates through time and space with the
(phase) velocity c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

�0�rl0lr
p .

The plane wave particle velocity of elastic waves as solu-
tion of the homogeneous Eq. (2.18) is calculated according
to

vðR; tÞ ¼ vP t � k̂P � R
cP

 !
k̂P þ vS t � k̂S � R

cS

 !
v̂S ð2:21Þ

with k̂S � v̂S ¼ 0. On behalf of the simultaneous appearance
of the $$- as well as the double curl-operator we anticipate
the simultaneous existence of longitudinal—vðR; tÞ�
k̂P ¼ 0—as well as transverse waves—vðR; tÞ � k̂S ¼ 0—with
different wave speeds due to the different prefactors of the
two operators in (2.18). As a matter of fact, the phase

velocity of longitudinal waves appears as cP ¼
ffiffiffiffiffiffiffiffi
kþ2l

q

q
whereas the transverse waves travel with phase velocity
cS ¼

ffiffi
l
q

q
. Since cP > cS the subscript P stands for primary

and S for secondary waves indicating the earlier arrival
time of P-waves against S-waves. Interesting enough, the
subscripts also recognize the physical nature of P- and S-
waves: P-waves are curl-free pressure waves and S-waves
are purely solenoidal shear waves. In (2.21) vP(t) and
vS(t) as well as k̂P and k̂S can be independently and arbi-
trarily chosen.

2.3.3. Spherical wave solutions of the inhomogeneous wave

equations: Point source superposition

2.3.3.1. Acoustic waves. It is convenient to eliminate the
time derivatives in the wave equations by means of a
Fourier transform:

F ðxÞ ¼Fff ðtÞg ¼
Z 1

�1
f ðtÞ ejxt dx; ð2:22Þ
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f(t) is a widely arbitrary time function, the variable x
denotes circular frequency and j ¼

ffiffiffiffiffiffiffi
�1
p

; F(x) is called
the (often complex valued) spectrum of f(t). The inverse
of (2.22) turns out to be

f ðtÞ ¼F�1fF ðxÞg ¼ 1

2p

Z 1

�1
F ðxÞ e�jxt dx. ð2:23Þ

Taking the Fourier transforms of p(R, t), f(R, t) and h(R, t)
with respect to time, the wave Eq. (2.15) transforms into
the Helmholtz equation

$ � $pðR;xÞ þ k2pðR;xÞ ¼ $ � fðR;xÞ � jxqhðR;xÞ;
ð2:24Þ

because F of ðtÞ
ot

n o
¼ �jxF ðxÞ. In (2.24) we have introduced

the wave number k ¼ x
c .

The solution of the Helmholtz equation with given
source spectra f(R,x) and h(R,x) is readily at hand if a
specialized source, a point source at source point R 0 repre-
sented by a three-dimensional delta-function d(R � R 0), is
considered first. The accordingly specialized Helmholtz
equation

$ � $pðR;xÞ þ k2pðR;xÞ ¼ �dðR� R0Þ ð2:25Þ
defines the three-dimensional scalar Green function
(spectrum)

pðR;xÞ ) GðR� R0;xÞ ¼ ejkjR�R0 j

4pjR� R0j ; ð2:26Þ

which, when transformed back to the time domain by an
inverse Fourier transform according to

GðR� R0; tÞ ¼
d t � jR�R0 j

c

� �
4pjR� R0j ; ð2:27Þ

can be interpreted as a spherical wave with time depen-
dence d(t) emanating from the source point R 0. Utilizing
the Green function (2.26) the solution of (2.24) reads

pðR;xÞ ¼
Z Z Z

V Q

½jxqhðR0;xÞ � $ � fðR0;xÞ�

� GðR� R0;xÞ d3R0; ð2:28Þ

where it is understood that the given sources reside in a
finite source volume VQ embedded in a qj-material being
zero outside VQ. Applying partial integration utilizing
Gauss’ theorem the volume integral (2.28) can be trans-
formed into

pðR;xÞ ¼
Z Z Z

V Q

½jxqhðR0;xÞGðR� R0;xÞ

þ fðR0;xÞ � $0GðR� R0;xÞ� d3R0 ð2:29Þ

thus exhibiting the source f(R,x) explicitly; $0GðR� R0;xÞ
denotes the gradient with respect to the source point coor-
dinates. This integral representation is intuitively inter-
preted as a superposition of isotropic spherical waves
emanating from source points within h(R 0,x) and dipole
waves with directionally dependent amplitudes emanating
from source points within f(R 0,x), it is a weighted point
source superposition. In our context of nondestructive test-
ing it is a mathematical representation of an incident
(acoustic) wave field coming from given sources, i.e., it is
a ‘‘transducer field’’.

For reasons to be obvious below we start to discuss
mathematical representations of incident acoustic wave
fields first.

2.3.3.2. Electromagnetic waves. Evaluation of the double
curl operator in (2.17) and taking the Fourier transform
with regard to time of E(R, t), Je(R, t) and Jm(R, t) results in

ð$ � $þ k2ÞI� $$
h i

� EðR;xÞ

¼ �jxl0lrJeðR;xÞ þ $� JmðR;xÞ ð2:30Þ

yielding a dyadic differential operator, which, when in-
verted, transforms into an integration with a dyadic Green
function being defined by the differential equation

ð$ � $þ k2ÞI� $$
h i

�GðR� R0;xÞ ¼ �IdðR� R0Þ.

ð2:31Þ
Its solution must certainly account for the ‘‘scalar wave
operator’’ $ � $þ k2 (compare (2.24)) plus an additional
term related to the $$-operator; as a result, the scalar
Green function (2.26) appears explicitly augmented by a
$$-term operating on this scalar Green function:

GðR� R0;xÞ ¼ Iþ 1

k2
$0$0

� �
ejkjR�R0 j

4pjR� R0j . ð2:32Þ

Consequently, the electric field strength spectrum has the
following point source superposition representation

EðR;xÞ ¼
Z Z Z

V Q

jxl0lrJeðR0;xÞ �GðR� R0;xÞ
h

�JmðR0;xÞ � $0 �GðR� R0;xÞ
i
d3R0 ð2:33Þ

once the curl-operator on Jm in (2.30) has been shifted to
the Green dyadic via Gauss’ theorem.

In contrast to the scalar case (2.29) the amplitudes of all

elementary spherical waves emanating from the source
points R 0 are now directionally dependent and, in addition,
due to their dyadic structure a rotation between Je(R

0,x),
Jm(R 0,x) and E(R,x) is involved.

2.3.3.3. Elastic waves. The search for the Green function
(tensor) of elastodynamics must simultaneously account
for elementary P- and S-waves, which are ‘‘hidden’’ in the
($$ � v)- and the ($� $� v)-operators; we know from the
plane wave solution that $$ � v yields longitudinal primary
(pressure) and that $� $� v yields transverse secondary
(shear) waves. From the electromagnetic case we learn to
evaluate the double curl-operator into the two terms
appearing in (2.30) with k ) kS whence an S-term similar
to (2.32) should originate. It is therefore rather intuitive,
that the following Green dyadic of elastodynamics
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CðR� R0;xÞ ¼ � 1

kþ 2l
1

k2
P

$0$0
ejkPjR�R0 j

4pjR� R0j

þ 1

l
Iþ 1

k2
S

$0$0
 !

ejkS jR�R0 j

4pjR� R0j ð2:34Þ

is computed as a solution of

l $ � $þ k2
S

� �
I� $$

h i
þ ðkþ 2lÞ$$

n o
� CðR� R0;xÞ ¼ �IdðR� R0Þ. ð2:35Þ

It is indeed split into a spherical S- and a spherical P-wave
term. The point source superposition representation of an
incident elastic wave field coming from sources f(R,x)
and h(R,x) is therefore obtained as

vðR;xÞ ¼
Z Z Z

V Q

�jxfðR0;xÞ � CðR� R0;xÞ
h

�hðR0;xÞ : c : $0CðR� R0;xÞ
	

d3R0. ð2:36Þ

For isotropic materials with c according to (2.14) the term

c : $0C can be further evaluated.

2.3.4. Acoustic wave equation for inhomogeneous materials

Tendon ducts with or without grouting defects are
(strong) inhomogeneities in an embedding material (con-
crete) and as such they act as scatterers for an incident
wave field: they are sources of a scattered field. As a matter
of fact, in a mathematical representation of the scattered
field, the scatterers can be replaced by equivalent or sec-
ondary sources (the sources of the incident field being con-
sidered as primary sources) representing their geometry
and material composition, which enter the respective inte-
grals of point source superposition. These integrals are sub-
sequently bound for an inversion, i.e., to deduce the
properties of the scatterer from the knowledge of the
scattered (and incident) field. Recognizing the respective
representations (2.29), (2.33) and (2.36) we perceive an
increasing complexity from acoustic to electromagnetic
and on to elastodynamic wave fields due to an increasing
Fig. 2. NDT-Problem as an in
complexity of the underlying Green functions (dyadics).
Therefore we start with the simplest case of acoustic waves
when we derive explicit inversion schemes in order not to
hide the principles behind the formalism.

Let us consider a material (of infinite extent) supporting
acoustic waves having a (constant) mass density q and a
(constant) compressibility j; a scatterer of finite volume
Vc with surface Sc is embedded in this material whose
geometry is given by the characteristic function Cc(R) of
Vc:

CcðRÞ ¼
0 for R 62 V c

1 for R 2 V c



; ð2:37Þ

we assume that the mass density inside Vc is the same as
outside, yet we admit an inhomogeneous compressibility
j(R) inside Vc. This scatterer is illuminated by an incident
field coming from a finite source volume VQ with only a
non-zero dilatation rate h(R, t), i.e., we do not allow for a
force density f(R, t). This situation is sketched in Fig. 2.
In order to identify an inverse problem we need data: these
should be the pressure p(R, t) on a (fictitious) surface SM

enclosing the volume VM. The NDT-problem as an inverse
scattering problem is then posed as follows: with the
knowledge of the incident field and p(R, t) on SM find the
location of Vc and j(R) within VM, i.e., find the location,
shape, size and character of a defect.

With the definition of the compressibility contrast

vjðRÞ ¼
1

j
½jðRÞ � j�CcðRÞ ð2:38Þ

we can define an inhomogeneous compressibility

jðRÞ :¼ j½1þ vjðRÞ� ¼
j for R 62 V c

jðRÞ for R 2 V c



ð2:39Þ

for all points in space inside and outside Vc. The Fourier-
transformed governing Eqs. (2.7), (2.8) with (2.11) and
(2.12) then read

� jxqvðR;xÞ ¼ �$pðR;xÞ; ð2:40Þ
jxjðRÞpðR;xÞ ¼ $ � vðR;xÞ þ hðR;xÞ ð2:41Þ
verse scattering problem.
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for R 2 R3. Inserting (2.40) into (2.41) yields

$ � $pðR;xÞ þ x2qj pðR;xÞ
¼ �x2qjvjðRÞpðR;xÞ � jxqhðR;xÞ ð2:42Þ

identifying

hjðR;xÞ ¼ �jxjvjðRÞpðR;xÞ ð2:43Þ
as a secondary (dilatation rate) source, which is equivalent
to the scatterer. By the way, an additional inhomogeneity
of the mass density within Vc would result in an additional
secondary force density source fq(R,x) = jxq vq(R)v(R,x)
containing the pertinent contrast vq(R); its divergence
would then additionally appear on the right-hand side of
(2.43) thus complicating the inversion considerably.

3. Wave field inversion: Acoustic waves

3.1. Wave field inversion as a nonlinear problem

With the help of the Green function (2.26) the solution
of (2.42) is readily obtained (compare (2.28)) in terms of
the superposition p(R,x) = pi(R,x) + ps(R,x) of the inci-
dent field pi(R,x) and the scattered field ps(R,x):

piðR;xÞ ¼ jxq
Z Z Z

V Q

hðR0;xÞGðR� R0;xÞd3R0; ð3:1Þ

psðR;xÞ ¼ k2

Z Z Z
V c

vjðR0ÞpðR0;xÞGðR� R0;xÞd3R0.

ð3:2Þ

Since ps(R 2 SM,x) are the data, grabbing vj(R) is via
inversion of (3.2)! Unfortunately, the total field p(R,x) is
required under the integral implying the knowledge of the
scattered field inside Vc, where, by definition, one has no
access. Hence, without any further approximation the in-
verse scattering problem is a nonlinear problem, which is
rather difficult to deal with; up to now, there is no algo-
rithm really available for practical applications [3].

3.2. Linearization

The simplest way to linearize the inverse scattering prob-
lem is to replace p(R 2 Vc,x) by something known, i.e., the
incident field alone. This comes as the Born approximation
for weak scatterers, yet for strong scatterers, for instance
voids in the qj-material, the complementary Kirchhoff
approximation can be dealt with along the same guidelines
[4]. Even though rather stringent both approximations
have proved extremely useful in nondestructive testing
[5,6]. Therefore we start the derivation of inversion algo-
rithms with the linearized representation

pBorn
s ðR;xÞ ¼ k2

Z Z Z
V c

vjðR0ÞpiðR0;xÞGðR� R0;xÞd3R0

ð3:3Þ

of the scattered field.
3.2.1. Multi-bistatic inversion: Frequency and angular

diversity

Let us assume a plane wave as incident field; according
to (2.19) its Fourier spectrum reads:

piðR;xÞ ¼ p0ðxÞejki �R; ð3:4Þ

the phase vector ki contains two parameters, i.e., (circular)
frequency x via jkij ¼ k ¼ x

c and illumination angle via the
propagation direction unit-vector k̂i ¼ ki

k , which stands for
the transducer location. The receiver at location R is sup-
posed to scan the surface SM. For one choice of k̂i and
one choice of R, radar people call this a bistatic set-up,
NDT people call it a pitch-catch set-up. Consequently, if
R varies on SM we face a multi-bistatic arrangement, which
must reflect itself in an inversion algorithm. Therefore, we
start with

pBorn
s ðR;x; k̂iÞ ¼ k2p0ðxÞ

Z Z Z
V c

vjðR0Þejki�R0

� ejkjR�R0 j

4pjR� R0j d
3R0. ð3:5Þ

Recognizing the fact, that our NDT application mostly
faces planar measurement surfaces SM, say an xy-plane
at distance z = d from an appropriately chosen cartesian
coordinate origin, we can express jR � R 0j as

jR� R0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy � y0Þ2 þ ðd � z0Þ2

q
;

x; y 2 SM ; x0; y0; z0 2 V M . ð3:6Þ

The choice of cartesian coordinates clearly identifies (3.5)
as a two-dimensional convolution integral with regard to
x 0 and y 0, which can be resolved applying the convolution
theorem of the two-dimensional spatial Fourier trans-
form

/̂ðKx;KyÞ ¼
Z 1

�1

Z 1

�1
/ðx; yÞe�jKxx�jKy y dxdy ¼Fxyf/ðx; yÞg

ð3:7Þ

with the inverse transform

/ðx; yÞ ¼ 1

ð2pÞ2
Z 1

�1

Z 1

�1
/̂ðKx;KyÞejKxxþjKy y dKxdKy

¼F�1
KxKy
f/̂ðKx;KyÞg. ð3:8Þ

Notice: We have chosen the signs in the kernel exponentials
opposite to (2.22) and (2.23). With the knowledge of the
two-dimensional spatial Fourier spectrum

bGðKx;Ky ; d � z0;xÞ ¼ j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � K2

x � K2
y

q ejjd�z0 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�K2

x�K2
y

p

ð3:9Þ

of the scalar Green function we obtain
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p̂Born
s ðKx þ kix;Ky þ kiy ; d;xÞ

¼ k2p0ðxÞ
jejd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�ðKxþkixÞ2�ðKyþkiy Þ2
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðKx þ kixÞ2 � ðKy þ kiyÞ2

q
�
Z 1

�1
v̂jðKx;Ky ; z0Þe�jz0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�ðKxþkixÞ2�ðKyþkiy Þ2
p

�kizÞ dz0

ð3:10Þ

from Eq. (3.5) after multiplying it with e�jkiÆR and assuming
d > z 0. After the definition of a third spatial Fourier vari-
able Kz through

Kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � ðKx þ kixÞ2 � ðKy þ kiyÞ2

q
� kiz ð3:11Þ

we identify the remaining z 0-integral as another Fourier
integral yielding the bistatic Fourier diffraction slice
theorem

p̂Born
s ðKx þ kix;Ky þ kiy ; d;xÞ

¼ k2p0ðxÞ
j

2ðKz þ kizÞ
ejdðKzþkizÞ~vjðKx;Ky ;KzÞ; ð3:12Þ

which relates the two-dimensional spatial Fourier trans-
form of the data to the three-dimensional spatial Fourier
transform of the j-contrast (denoted by ~vj). Writing
(3.11) in vector notation according to jK + kij = k intro-
Fig. 3. Mapping spatially Fourier transfo
ducing the Fourier vector K, i.e., K-space, with the carte-
sian components Kx, Ky, Kz tells us that the Fourier
transformed data have to be placed on a half sphere in
K-space with midpoint ki and radius k (Fig. 3). In an
impulsive illumination (with fixed k̂i) a frequency band is
at hand and, hence, the radius of the sphere can be varied
leading to a specific coverage of K-space in terms of fre-
quency diversity, whereas a different coverage in terms of
angular diversity is obtained for a fixed frequency varying
the illumination direction k̂i. Of course, as soon as a partic-
ular coverage of K-space is completed, a three-dimensional
inverse spatial Fourier transform yields a bandlimited ver-
sion (due to the finite coverage of K-space) of the contrast
function.

3.2.2. Multi-monostatic inversion: Frequency diversity

A common experimental set-up in NDT relies on the
simultaneous scan of transmitting and receiving transduc-
ers; if they both collapse into only one device, a pulse–echo
or, in radar terminology, a monostatic experiment is per-
formed, and, when the device is scanned along a surface,
it is a multi-monostatic experiment. In that case, the inci-
dent field is conveniently modeled by a point source at
R0 2 SM:

piðR;x;R0Þ ¼ p0ðxÞ
ejkjR�R0j

4pjR� R0j
. ð3:13Þ
rmed multi-bistatic data into K-space.



Fig. 4. Mapping spatially Fourier transformed multi-monostatic data into K-space.
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Insertion into (3.5) yields R) R0, and the multi-mono-
static set-up requires R) R0 whence the following expres-
sion is obtained:

pBorn;m
s ðR;xÞ ¼ k2p0ðxÞ

Z 1

�1

Z 1

�1

Z 1

�1
vðR0Þ

� e2jkjR�R0 j

ð4pÞ2jR� R0j2
d3R0; ð3:14Þ

the upper index m stands for monostatic. Unfortunately, at
that point, we cannot immediately proceed as before,
because, due to the square in the denominator, the kernel
of the integral is not a Green function, and, hence, its
two-dimensional spatial Fourier transform is not known
analytically. Yet the following definition

pBorn;mo
s ðR;xÞ ¼ 2p

j

o

ok
pBorn;m

s ðR;xÞ
k2p0ðxÞ

ð3:15Þ

of a modified (monostatic) field leads to

pBorn;mo
s ðR;xÞ ¼

Z 1

�1

Z 1

�1

Z 1

�1
vðR0Þ e2jkjR�R0 j

4pjR� R0j d
3R0;

ð3:16Þ
which contains a Green function with k replaced by 2k.
Obviously, applying Fourier transforms as before implying
the definition of

Kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2 � K2

x � K2
y

q
P 0() jKj ¼ 2k ð3:17Þ

yields

p̂Born;mo
s ðKx;Ky ; d;xÞ ¼

j

2Kz
ejdKz~vðKx;Ky ;KzÞ ð3:18Þ

as the algorithm to map Fourier transformed multi-mono-
static data into K-space. This time, the half spheres under
concern are origin centered, and the coverage of a finite
sub-set of K-space can only be achieved with a variation
of frequency (frequency diversity). This is illustrated in
Fig. 4.
3.3. Wave field inversion: Electromagnetic and elastic

waves

3.3.1. Electromagnetic waves

3.3.1.1. Born linearization. In the acoustic case we simpli-
fied the inversion considering only a compressibility inho-
mogeneity in Vc thus avoiding having to deal with the
gradient of the scalar Green function. In the electromag-
netic case however we face at least the Green dyadic
(2.32) exhibiting a dyadic del-operation on the scalar Green
function; yet we can avoid an additional curl-operation
disregarding magnetic current densities. This amounts to
disregarding an inhomogeneity in the permeability keeping
only an inhomogeneous permittivity �r(R) in Vc. Such an
inhomogeneity immediately yields the definition of an
equivalent electric current density

JecðR;xÞ ¼ �jx�0�rveðRÞEðR;xÞ ð3:19Þ
quite similar to (2.43). Here, ve(R) according to

veðRÞ ¼
1

�r
½�rðRÞ � �r�CcðRÞ ð3:20Þ

defines the permittivity contrast function. Introducing
the Born approximation with a plane wave incident
field

EiðR;xÞ ¼ E0ðxÞejki �RbE0 ð3:21Þ

the point source superposition representation of the scat-
tered field is obtained from (2.33):

EBorn
s ðR;x; k̂i; bE0Þ¼ k2E0ðxÞbE0

�
Z Z Z

V c

veðR0Þejki �R0 Iþ 1

k2
$0$0

� �
ejkjR�R0 j

4pjR�R0jd
3R0.

ð3:22Þ

Proceeding as in the acoustic case we derive the electro-
magnetic bistatic Fourier diffraction slice theorem



378 K.J. Langenberg et al. / Cement & Concrete Composites 28 (2006) 370–383
bEBorn

s ðKx þ kix;Ky þ kiy ; d;x; kiz; bE0Þ

¼ k2E0ðxÞ
j

2ðKz þ kizÞ
ejdðKzþkizÞ

� I� 1

k2
ðKþ kiÞðKþ kiÞ

� 	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼WðK;kiÞ

�bE0~veðKÞ ð3:23Þ

as a vector counterpart of (3.12); the Fourier vector K has
cartesian components Kx, Ky, Kz with Kz given by (3.11),
i.e., we have jK + kij = k. Resolving (3.23) for ~veðKÞ
involves the task of inverting the second rank tensor
W(K,ki); since detW(K,ki) = 0 [7], this is not possible, but
recognizing ki � bE0 ¼ 0, one basically faces the inversion
of

wðK; kiÞ ¼ I� 1

k2
ðKþ kiÞK ð3:24Þ

yielding [7]

bE0 � I� ðKþkiÞK
ðKþkiÞ �K� k2

� 	
� bEBorn

s ðKxþ kix;Ky þ kiy ;d;x;kiz; bE0Þ

¼ k2E0ðxÞ
j

2ðKzþ kizÞ
ejdðKzþkizÞ~veðKÞ. ð3:25Þ

The first term bE0 � bEBorn on the left-hand side of (3.24) pro-
vides a scalar inversion scheme for electromagnetic vector
waves whereas the second term can be understood as a
polarimetric correction.

An alternative inversion formula is obtained if (3.23) is
dot-multiplied with bE0 �WðK; kiÞ yielding

bE0 � I� 1

k2
ðKþ kiÞðKþ kiÞ

� 	
� bEBorn

s ðKx þ kix;Ky þ kiy ; d;x; kiz; bE0Þ

¼ k2E0ðxÞ
j

2ðKz þ kizÞ
ejdðKzþkizÞ

� bE0 � I� 1

k2
ðKþ kiÞðKþ kiÞ

� 	
 
2

~veðKÞ. ð3:26Þ
3.3.1.2. Kirchhoff linearization. In general, the surfaces of
tendon ducts can be approximated by a perfect (infinite)
electric conductivity yielding

JecðR;xÞ ¼ ccðRÞ �HðR;xÞ ð3:27Þ

as an equivalent source; here, the vector singular function
cc(R) = ncc(R) of the surface Sc has the direction of the
(outward) normal unit-vector n, and the singular function
cc(R) has the distributional sifting property reducing a vol-
ume integral over Vc to a surface integral over Sc. In that
sense, the current density Jec(R,x) is a volume current
density. Calculation of cc(R) is in terms of �$CcðRÞ result-
ing in $� ccðRÞ ¼ 0 [8]. As it is true for all equivalent
sources, the current density (3.27) depends upon the total
(magnetic) field, linearization is in terms of the incident
field Hi(R,x) resulting in the physical optics current density
JPO
ec ðR;xÞ ¼ 2cuðRÞ �HiðR;xÞ

¼ E0ðxÞ2
ffiffiffiffiffiffiffiffiffi
�0�r

l0lr

r
cuðRÞ � k̂i � bE0

� �
ejki �R

¼ E0ðxÞ

� 2

ffiffiffiffiffiffiffiffiffi
�0�r

l0lr

r
k̂icuðRÞ � bE0 � bE0cuðRÞ � k̂i

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼JcðRÞ

ejki�R

ð3:28Þ

according to the Kirchhoff approximation, introducing a
sharp shadow boundary via a step-function uð�k̂i � nÞ,
which is hidden as a factor in cu(R) thus characterizing
the illuminated part of the surface of the scatterer only;
the Kirchhoff approximation holds for smooth convex
scatterers (like tendon ducts).

Instead of (3.25) we obtain the inversion formula

I� ðKþ kiÞki

K � ki

� 	
� bEPO

s Kx þ kix;Ky þ kiy ; d;x; kiz; bE0

� �
¼ jxl0lrE0ðxÞ

j

2ðKz þ kizÞ
ejdðKzþkizÞeJecðKÞ ð3:29Þ

from which the components of ec
u
ðKÞ � bE0 and ec

u
ðKÞ � k̂i can

be recovered via dot-multiplication with k̂i and bE0, respec-
tively. A third component in an orthonormal set of unit-
vectors k̂i, bE0, bEorth is obtained if a second experiment is
performed with a polarization bEorth orthogonal to bE0,
hence, in principle, the scattering surface can be recovered.

3.3.2. Elastic waves

Referring to the pertinent point-source representation
(2.36) of the scattered field we can basically proceed as with
electromagnetic waves. For the sake of simplicity we con-
sider only a q-inhomogeneity which gives rise to an equiv-
alent force density

fqðR;xÞ ¼ �jxqvqðRÞvðR;xÞ ð3:30Þ

involving the q-contrast function

vqðRÞ ¼
1

q
½qðRÞ � q�CcðRÞ ð3:31Þ

in a manner similar to (2.38). The incident wave can be
either a plane pressure or a plane shear wave

vP;S
i ðR;xÞ ¼ vP;SðxÞejkP;S

i �Rv̂P;S ð3:32Þ

with phase vectors kP;S
i ¼ kP;Sk̂P;S

i and polarizations v̂P ¼ k̂P

and v̂S � k̂S ¼ 0. From (2.36) we obtain within the Born
linearization

vBorn
s ðR;xÞ ¼ �x2qvP;SðxÞv̂P;S

�
Z Z Z

V c

vqðR0ÞejkP;S
i �R

0
CðR� R0;xÞd3R0. ð3:33Þ
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Since C according to (2.34) is composed of a pressure
wave term and a shear wave term we can concentrate on
either one of them by either dot-multiplication with
KS þ kP;S

i or cross-multiplication with KP þ kP;S
i and pro-

ceeding as with (3.26) to produce a P-image from P-wave
incidence

KS þ kP
i

� �
� v̂Born;P

s Kx þ kP
ix;Ky þ kP

iy ; d;x; v̂P

� �
¼ vPðxÞ

j

2ðKPz þ kP
izÞ

2
ejdðKPzþkP

izÞ KS þ kP
i

� �
� KP þ kP

i

� �
KP þ kP

i

� �
� v̂P~vqðKÞ; ð3:34Þ

a (mode-converted) P-image from S-wave incidence

KS þ kS
i

� �
� v̂Born;P

s Kx þ kS
ix;Ky þ kS

iy ; d;x; v̂S

� �
¼ vSðxÞ

j

2ðKPz þ kS
izÞ

2
ejdðKPzþkS

izÞ KS þ kS
i

� �
� KP þ kS

i

� �
KP þ kS

i

� �
� v̂S~vqðKÞ; ð3:35Þ

similarly an S-image from S-wave incidence

KP þ kS
i

� �
� v̂Born;S

s Kx þ kS
ix;Ky þ kS

iy ; d;x; v̂S

� �
¼ �k2

SvSðxÞ
j

2ðKSz þ kS
izÞ

2
ejdðKSzþkS

izÞ KP þ kS
i

� �
� I� 1

k2
S

KS þ kS
i

� �
KS þ kS

i

� �" #
� v̂S~vqðKÞ ð3:36Þ

and a (mode-converted) S-image from P-wave incidence
Fig. 5. Bottom: Impulsive electromagnetic wave front snap-shots for two cros
without reinforcement; right: cross-section with reinforcement (horizontal axis:
(horizontal axis: time, vertical axis: scan coordinate).
KP þ kP
i

� �
� v̂Born;S

s Kx þ kP
ix;Ky þ kP

iy ; d;x; v̂P

� �
¼ �k2

SvPðxÞ
j

2ðKSz þ kP
izÞ

2
ejdðKSzþkP

izÞ KP þ kP
i

� �
� I� 1

k2
S

KS þ kP
i

� �
KS þ kP

i

� �" #
� v̂P~vqðKÞ ð3:37Þ

can be obtained. Note the similarity of the trans-
verse) transverse wave algorithm (3.36) with the electro-
magnetic counterpart (3.26)! The respective K-space
vectors in (3.3)–(3.37) are defined as follows:

KP;S ¼ Kxex þ Kyey þ KP;Szez; ð3:38Þ

KP;Sz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

P;S � ðKx þ kP;S
ix Þ

2 � ðKy þ kP;S
iy Þ

2
q

� kP;S
iz . ð3:39Þ

Of course, if data strictly satisfy the Born approxima-
tion, each of the above inversion equations yields the same
result; yet in real life, data are not strictly of the Born type,
and, therefore, application of different inversion equations
might yield complementary information about the
scatterer.

4. Electromagnetic wave field modeling and inversion

In Fig. 1 the real-life test specimen is complemented by a
computer model ready for computational simulations; for
electromagnetic wave calculations we use the commercially
available code Microwave Studio [13] whose primary out-
put is the time evolution of spatially distributed wave ampli-
tudes, i.e., time domain wave fronts. Fig. 5 shows two
respective snap-shots: a plane wave with polarization bE0

parallel to the duct axis is running from top to bottom,
which is scattered by the tendon duct and the reinforcement
s-sections of the computer specimen displayed in Fig. 1; left: cross-section
time, vertical axis: scan-coordinate); top: B-scan data for these wave fields



Fig. 6. Electromagnetic vector wave inversion for the computer specimen displayed in Fig. 1; top: cuðRÞ � bE0 and cuðRÞ � bEorth; middle: cuðRÞ � k̂i forbE0-polarization and cuðRÞ � k̂i for bEorth-polarization; bottom: magnitude of cu(R) obtained from above components.
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grid, both modeled with infinite electrical conductivity
embedded in homogeneous cement. We have selected two
cross-sections out of the three-dimensional wave field,
one on the side with no reinforcement and one on the side
with reinforcement, the latter one clearly exhibiting the
disturbance caused by the grid. In addition, Fig. 5 displays
two cross-sections out of the resulting three-dimensional B-
scan data field in the component parallel to bE0, again one
without and one with the reinforcement grid: The first data
line reflects the incident plane wave followed by either the
clean hyperbola (cross-section of a hyperboloid) represent-
ing the tendon duct scattering or the respective hyperbola
disturbed by the grid together with superimposed hyperbo-
las of the single grid cylinders. After a Fourier trans-
form with regard to time yielding data spectra the
complete three-dimensional polarimetric data field is now
ready for inversion, i.e., the three-dimensional components
cuðRÞ � bE0 and cuðRÞ � k̂i (k̂i being orthogonal to the speci-
men surface) can be deduced from (3.29); they are dis-
played as iso-contour plots in Fig. 6: Typically, for bE0

parallel to the duct axis only those grid cylinders having
the same orientation are ‘‘visible’’ by the incident wave,
and k̂i-components of the induced current appear only at
the end points of the duct and the grid bars. The opposite
is true if the polarization of the incident wave is changed tobEorth, because in that case circumferential currents are
induced on the duct surface (Fig. 5). From cuðRÞ � bE0,
cuðRÞ � bEorth and the average of cuðRÞ � k̂i as calculated for
both polarizations the magnitude of the singular function
is obtained as displayed in Fig. 5. Obviously, simulations
of that kind allow for parametric studies relating to the
mesh size of the reinforcement grid below which tendon
ducts can still be located.

5. Elastic wave field modeling, measurement and inversion

5.1. Synthetic data

We have already tested (3.34) and (3.37) (in a somewhat
different version according to a somewhat different deriva-
tion exploiting far-field properties) against experimental
data obtained for side-wall drilled holes as defects in a steel
test specimen [9]. It turns out that both images indeed
provide complementary information about the scatterers.
Here, we will demonstrate that with two-dimensional syn-
thetic data obtained for a tendon duct model. Regarding
the numerical computation of elastodynamic wave propa-
gation, based on the similarity of the underlying governing
equations, we apply the same discretization idea as imple-
mented in microwave studio (the finite integration tech-
nique) yet we use our own code [12]. Fig. 7 displays
geometry, wave fronts, B-scan data and images for a



Fig. 7. Two-dimensional elastic wave field modeling and inversion: Geometry of the specimen, wave front snap-shot, B-scan data for the data component
normal and tangential to the surface (horizontal axis: time, vertical axis: scan coordinate), P) P-image, P) S-image.
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tendon duct related model; it consists of a circular cylindri-
cal steel shell containing cement being embedded in homo-
geneous cement. The bar on top of the specimen surface
indicates the transducer aperture, which vertically radiates
a nearly plane pressure wave; when scattered by the duct
geometry, ‘‘reflected’’ pressure and shear waves are cre-
Fig. 8. Real-life experiment with elastic waves: Autobahn bridge near Vienna; s
ated—the latter can be recognized by the zero in backscatter-
ing direction—traveling back to the surface, where they are
supposed to be recorded pointwise (the spherical waves ema-
nating from the top edges of the specimen are created by
Rayleigh surface waves from the edges of the radiating aper-
ture). The two B-scans below show the normal component
canning device with A1220 55 KHz shear wave combined transducer array.



Fig. 9. Scan area: top view and side view (the 30 ducts have diameters of 40 mm each containing a single steel cable with a diameter of 32 mm).
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of the particle velocity vector (left) and its component tan-
gential to the surface (right). Typically, one recognizes scat-
tering hyperbolas as in the electromagnetic case (Fig. 5),
here in particular two pressure wave hyperbolas coming
from the front and rear surface of the duct model, as well
as mode-converted shear wave hyperbolas to be recognized
Fig. 10. 55 KHz multi-monostatic scalar shear wave image of tendon ducts; n
from the top in the sequence of pictures (12 cm, 14 cm, 18 cm).
by the different asymptotic slopes. After a Fourier trans-
form with regard to time, these data can be inserted into
the two-dimensional versions (Ky = 0) of (3.34) and (3.37)
to produce P) P- and P) S-images, respectively. Fig. 7
confirms that there is complementary information about
the duct surface in those two images.
ote: the plane attached to the three-dimensional image space slides down
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5.2. Experimental real-life data

With Fig. 8 we enter the field of real-life applications of
the ‘‘image producing theory’’ as outlined above; it shows
part of an Autobahn bridge near Vienna in Austria where
the German Federal Institute for Materials Research and
Testing1 took on-site measurements with the A1220
point-contact transducer from ACS (acoustic control sys-
tems) in a multi-monostatic shear wave mode within a
pre-selected area. The resulting three-dimensional data
field in terms of v̂S � vS

s (x,y,d,x, v̂S) was treated as a scalar
data field and processed according to the algorithm out-
lined in Section 3.2.2. The scan area is shown in Fig. 9;
below that area five layers of tendon ducts each containing
six specimens are ‘‘hidden’’, and the imaging results as dis-
played in Fig. 10 clearly show that at least three layers are
prone to detection at their respective location.

6. Conclusions

Based on the similarity of the underlying governing
equations we have evaluated a unified theory of modeling
and imaging with acoustic, electromagnetic and elastic
waves to be applied to specific problems in nondestructive
testing of concrete. For additional examples the reader is
referred to [10,11]. Our goal in the near future will be the
further exploitation of the polarimetric information of elec-
tromagnetic and elastic waves, in particular utilizing the
various elastic wave modes for which the A1220 transducer
can be operational, in order to be finally able not only to
detect tendon ducts but to assess their integrity related to
grouting defects.

References

[1] de Hoop AT. Handbook of radiation and scattering of waves. Lon-
don: Academic Press; 1995.
1 We gratefully acknowledge the cooperation with Dr. H. Wiggen-
hauser, Dr. M. Krause and D. Streicher, who made these data available to
us through a joint research project funded by the German Research
Council [14].
[2] Karlsson A, Kristensson G. Constitutive relations, dissipation and
reciprocity for the Maxwell equations in the time domain. J Electrom
Waves Appl 1992;6:537.

[3] Belkebir K, Saillard M. Special section: Testing inversion algorithms
against experimental data. Inverse Probl 2001;17.

[4] Langenberg KJ. Linear scalar inverse scattering. In: Pike R, Sabatier
PC, editors. Scattering in pure and applied science. London: Aca-
demic Press; 2002.

[5] Langenberg KJ, Brandfaß M, Hannemann R, Hofmann C, Kaczo-
rowski T, Kostka J, et al. Inverse scattering with acoustic, electro-
magnetic and elastic waves as applied in nondestructive evaluation.
In: Wirgin A, editor. Wavefield inversion. Vienna: Springer; 1999.

[6] Marklein R, Mayer K, Hannemann R, Krylow T, Balasubramanian
K, Langenberg KJ, et al. Linear and nonlinear inversion algorithms
applied in nondestructive evaluation. Inverse Probl 2002;18:1733.

[7] Chen HC. Theory of electromagnetic waves. New York: McGraw-
Hill; 1983.

[8] Langenberg KJ, Brandfaß M, Fellinger P, Gurke T, Kreutter T. A
unified theory of multidimensional electromagnetic vector inverse
scattering within the Kirchhoff or Born approximation. In: Boerner
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