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INTRODUCTION

Today, the applications of piezoelectric materials in transducers/sensors are
widespread, e. g., in pulse—echo systems in nondestructive testing (NDT) or medical
imaging (sonography) with ultrasound. The goal of this work is to derive a numerical
modeling tool for the development and optimization of piezoelectric
transducers/sensors, and/or to get a deeper understanding of the wave propagation in
piezoelectric materials applying computer simulations [1,2]. The piezoelectric effect is
a linear effect and couples the governing equations of electromagnetics and
elastodynamics [3,4].

This paper presents a novel numerical method, the Piezoelectric Finite
Integration Technique (PFIT), to model piezoelectric transducers/sensors and
ultrasonic wave phenomena in the time domain [5]. PFIT is derived within the
electroquasistatic (EQS) approximation from the governing equations in integral form
by applying the well-established Finite Integration Technique (FIT). Voltage/charge
driven and current driven PFIT algorithms have been developed, called U-PFIT and
[-PFIT, respectively. In order to model the excitation mode as well as the reception
mode of a piezoelectric transducer by a voltage generator including the internal
resistance [, of the voltage generator in the numerical modeling scheme the I-PFIT
algorithm is combined with a network algorithm. The resulting algorithm is here
checked against measurements and results of a 1-D lattice model [6]. Further results
can be found in [5].

LINEAR PIEZOELECTRICITY AND THE PIEZOELECTRIC FINITE INTEGRA-
TION TECHNIQUE

For a linear, inhomogeneous, dissipative (viscid), piezoelectric material the
constitutive equations are

J(R, 1) = ppo(R) v(R, 1)
D(R, ) = ES(E) -E(R, 1) +
S(R.1) = s"(R) : T(R.1) —

(R):S(R, 1)

"(R):D(R.1) +d*(R)-E(R.1)

119 1o



with the linear momentum density vector j, position vector R, time ¢, mass density at
rest ppo, particle velocity vector v, electric flux density vector D, permittivity tensor
5, electric field strength vector E, piezoelectric coupling tensor e, deformation tensor

S, compliance tensor s , Cauchy stress tensor T, relaxation tensorT , symmetric

velocity gradient tensor D = sym{Vy}, and the piezoelectric couphng tensor d. All

field quantities are functions of the position vector R = z;e; (summation conve_ntion)
and time ¢, and all material properties are functions of R only. The centered dot
represents the scalar product and the colon denotes the double-scalar product with
the property ab:cd = (a-d)(b-c). The upper indicial notation 231 indicates
transposition of the tensor elements: d*** = (dijrese; e, ) = dijre;e.e;.

If the dimension of the piezoelectric material is small compared to the
electromagnetic wavelength, it is convenient to introduce the electroquasistatic (EQS)
approximation E(R,t) = —V®(R,?) with the electric scalar potential ® [e. g.,
Nelson, 1979; Auld, 1990]. For example, this holds for a frequency f < 1 GHz for a
dimension of X ,x = 1 em. Within the EQS approximation all magnetic effects are
neglected. Then, the governing equations of piezoelectric waves are Newton—Cauchy’s
equation of motion, Poisson’s equation, and the equation of deformation rate, which
read for a volume V' with the surface S = 9V

///,opo V(R,1)dV = #g : (g,t)dSJr///Vﬁ(g,t)dv (1)
ﬁig eS(R)- VO(R, 1)dS = # -e(R) :sym{ Vu(R, t)}dS

/// (R, 1)dV — / (R, 1)d (2)

/// $(R): DR, (Y = # sym{nv(R. 1)}d5 + /// ) sym{V (R, )}dV

///d231 - VO(R, 1) dV+// (R.t)d (3)

with the volume force density vector f, particle displacement vector u, electric charge
density o, electric surface charge density 7, source of deformation rate tensor h, and
the surface normal n. The dot indicates the first time derivate.
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Figure 1. Equivalent electrical circuit.



The set of consistent matrix equations of the explicit elliptic-hyperbolic time
domain algorithm PFIT [Marklein, 1997] is obtained by introducing a staggered grid
system (G, CN?) with the grid spacing Az, applying the Finite Integration Technique
(FIT) to Eq. (1)=(3), and discretizing time derivatives with finite difference formulas

(2 = t/At).

To include an external electrical load in the numerical scheme, which is in many
cases an Ohmic resistance R, (see Fig. 1), the current driven approach is combined
with a network algorithm. A flowchart of the resulting algorithm is given in Fig. 2.
SSOR and CG algorithms are implemented to solve Poisson’s grid equation. In the
following examples a CG algorithm with diagonal scaling (DCG) is applied.
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Figure 2. Combined network algorithm (left) and I-PFIT algorithm (right).
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Figure 3. Ultrasonic piezoelectric Pz27 disk transducer on a brass cylinder: a) photo-

graph and b) 2-D geometry for the 2-D PFIT modeling.

a) 1-D Model after Hayward & Jackson [1986]
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Figure 4. Ultrasonic piezoelectric Pz27 disk transducer on a brass cylinder: comparison
(a—d) of the piezoelectric voltage u,; at the Pz27 disk (A-scan) for R, = 50 Q and a
sine pulse excitation with uvg = 10 V, n = 2 cycles, and fo = 2 MHz. EP: excitation
pulse; BEn: n—th backwall echo; SEn: n—th secondary echo.
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Figure 5. Ultrasonic piezoelectric Pz27 disk transducer on a brass cylinder: 2-D PFIT
|{V}|-snapshots. EP: excitation pulse; BEn: n—th backwall echo; SEn: n—th secondary
echo.
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Figure 6. Ultrasonic piezoelectric Pz27 disk transducer on a brass cylinder with a back-
wall breaking notch: a) photograph and b) 2-D geometry for the 2-D PFIT modeling.

a) 2-D PFIT Modeling
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Figure 7. Ultrasonic piezoelectric Pz27 disk transducer on a brass cylinder with a
backwall breaking notch: comparison between the modeled (a) and experimental (b)
voltage up; at the Pz27 disk (A-scan) for B, = 50  and a sine pulse excitation with
up =10 V, n = 2 cycles, and f. = 2 MHz. EP: excitation pulse; NTE: notch tip echo
BE1: 1st backwall echo.
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Figure 8. Ultrasonic piezoelectric Pz27 disk transducer on a brass cylinder: 2-D PFIT
|{V}|-snapshots. EP: excitation pulse; BEn: n—th backwall echo; SEn: n—th secondary
echo.



NUMERICAL RESULTS AND VALIDATION WITH EXPERIMENTAL DATA

Fig. 3 shows a photograph of the first sample and the 2-D geometry for the 2-D
PFIT modeling. The sample consists of a piezoelectric Pz27 disk transducer which is
adhesively bonded on a brass cylinder. All materials are considered nondissipative.
Fig. 4 shows a comparison of the voltage at the piezoelectric disk between the results
of the 1-D model by Hayward & Jackson [1986], 1-D PFIT modeling, 2-D PFIT
modeling, and the measurement. Especially the 2-D PFIT modeling gives an excellent
agreement with the experimental results in respect to the amplitude decay of the
backwall echos (BE) and the 1st secondary echo (SE1). The latter is missing in the
1-D modeling results, because this is a multidimensional effect. The snapshots shown
in Fig. 5 explain the generation of each echo signal. A second sample is given in
Fig. 6, it is the sample shown in Fig. 3 with a backwall breaking notch. A comparison
between the modeled and experimental voltage is given in Fig. 7, which validates the
numerical results. The dominant signals are the excitation pulse (EP), the notch tip
echo (NTE), and the 1st backwall echo (BE1). Because of the 2-D modeling the
experimental backwall echo (BE1) has a smaller amplitude. A sequence of 2-D PFIT
{V}-snapshots is displayed in Fig. 8 showing the ultrasonic waves propagation and

the generation of the notch tip echo (NTE) and the 1st backwall echo (BE1).
CONCLUSIONS

A novel numerical modeling tool called PFIT for the modeling of coupled
piezoelectric and ultrasonic wave phenomena has been presented. The obtained
results illustrating the power of PFIT and giving trust for further applications: to
help to understand ultrasonic wave propagation, especially in complex materials and
complex geometries, to optimize well-accepted NDT techniques, and/or to develop
new and more efficient NDT techniques.

REFERENCES

1. Lerch, R., Simulation of Piezoelectric Devices by Two- and Three-Dimensional
Finite Elements. IEEE Trans. Ultrason. Ferroelect. Freq. Cont., Vol. 37, No. 2,
May, pp. 233-247, 1990.

2. Roberts, M. J., Numerical Modeling of Piezoelectric Transducer Arrays for Medical
Imaging Systems. Ph. D. Thesis, Worcester Polytechnic Institute, Worcester,
Mass., USA, 1991.

3. Nelson, D. F., “Electric, Optic, and Acoustic Interactions in Dielectrics,” John
Wiley & Sons, New York, USA, 1979.

4. Auld, B. A., “Acoustic Fields and Waves in Solids,” 2nd ed., R. E. Krieger
Publishing Company, Malabar, Florida, USA, 1990.

5. Marklein, R., “Numerical Methods for the Modeling of Acoustic, Flectromagnetic,
Elastic and Piezoelectric Wave Propagation Problems in the Time Domain Based
on the Finite Integration Technique,” Shaker Verlag, Aachen, Germany, 1997. (in
German)

6. Hayward, G., M. N. Jackson, A Lattice Model of the Thickness—Mode Piezoelectric
Transducer. IEEFE Trans. Ultrason. Ferroelect. Freq. Cont., Vol. 33, No. 1,
pp- 41-50, 1986.



