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1. ABSTRACT 
 
 This review paper presents a unified treatment of the numerical time-domain modeling of 
acoustic, electromagnetic, and elastodynamic waves and of the combination thereof: this means 
coupled wave fields, like piezoelectric (elasto-electric) and electromagnetic-ultrasonic wave fields. 
Since the famous paper by Yee [1966], the time-domain solution of Maxwell’s equations has 
become very popular, and this initiated the Finite-Difference Time-Domain (FDTD) Method 
[Taflove and Hagness, 2000; fdtd.org, 2001]. Ten years later, Madariaga [1976] independently 
developed a similar method in elastodynamics. Both methods start from the governing equations 
in differential form, using standard second-order finite-difference stencils in space and time. In 
electromagnetics, Weiland [1977] introduced a different approach, which starts from the full set of 
Maxwell’s equations in integral form. Today, this method is commonly called the Finite 
Integration Technique (FIT). In the 1990s, based on Weiland’s ideas, Fellinger [1991] adapted the 
FIT to the elastodynamic case. Today, a toolbox of several modeling codes – called AFIT, 
EMFIT, EFIT, PFIT, and EMUSFIT, which stand for acoustic (A), electromagnetic (EM), elastic 
(E), piezoelectric (P), and electromagnetic-ultrasonic (EMUS) Finite Integration Technique (FIT) 
– is available [Marklein, 1997, 2000a, b]. In all these cases, the underlying governing equations in 
integral form are discretized with the FIT on a dual grid complex in space and time, which yields 
the so-called discrete grid equations. One of the advantages of the FIT approach is that the 
resulting discrete matrix equations represent a consistent one-to-one translation of the underlying 
field equations. Discrete topological operators are introduced, which ensure important vector 
analytical properties in the discrete grid space. The FIT implicitly insures that the numerical 
results are free of late-time instabilities and artificial sources. Simplicity is another important 
advantage of the FIT, which allows an easy and efficient implementation on various computer 
architectures. The underlying theory and the derivation of the numerical codes are presented in a 
unified way. The numerical examples and applications were computed with the software package 
fit [Marklein, 1997, 2000a, b]. 
 
 
2. INTRODUCTION 
 
 The computational time-domain modeling of different types of wave-field problems is 
utilized in various disciplines of engineering and science: in increasingly challenging problems in 
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remote sensing, communications, optics, geophysical exploration, ground-penetrating radar, 
medical diagnosis, and nondestructive evaluation. Figures 1 and 2 display typical sketches of the 
setups used in nondestructive testing and material characterization. Figure 3 shows a typical 
transient echo signal of the setup shown in Figure 2. Various numerical techniques are applied 
today to model transient wave fields in acoustics, electromagnetics, and elastodynamics, as well as 
coupled effects thereof: for instance, the Finite-Difference (FD), Finite-Element (FE), Finite-
Volume (FV), Finite-Difference Time-Domain (FDTD), Finite-Integration (FI), and Finite-
Volume Time-Domain (FVTD) Methods, as well as the recently introduced Microcell Time-
Domain (MCTD) Method [Marrone, 2001], which is an extension of the novel cell method 
proposed by Tonti  [2001a] (see also [Discrete Physics, 2001]). This review paper mainly focuses 
on the Finite Integration Technique (FIT). 
 

 
 

Figure 1. A typical measurement setup used in nondestructive testing/material characterization with 
electromagnetic wave fields: test sample with a penetrable inclusion. TX: transmitter; RX: receiver; ε , , 
and σ  are the permittivity, permeability, and electric conductivity of the ith material. 

i iµ

i

 
 Historically, Weiland [1977] introduced the Finite Integration Technique (FIT) three decades 
ago in electrodynamics, where FIT was applied to the full set of Maxwell’s equations in integral 
form. The method uses all six vector components of electric field strength and magnetic flux 
density on a dual grid system [Weiland, 1986; Bartsch et al., 1992]. Weiland [1996] reformulated 
the Finite Integration Technique in terms of global quantities assigned to space objects – like the 
electric and magnetic (grid) voltage assigned to a contour, and the electric and magnetic (grid) flux 
assigned to a surface – which allows a matrix formulation, also valid for irregular and non-
orthogonal grid systems. In a recently published book, Van Rienen [2001a] presented a detailed 
description of these ideas (see also [Thoma, 1997; Clemens, 1998; Clemens et al., 1999]). In his 
thesis, Pinder [1998] treated the numerical FIT modeling of coupled electromagnetic 
thermodynamic effects (see also [Clemens et al., 2000; van Rienen, 2001a]). Based on these 
developments, commercial software packages are available, for example, the CST Microwave 
Studio™, CST Design Studio™, and MAFIA 4 [CST, 2001] (note that MAFIA is an acronym for 
Maxwell’s equations solved with the finite integration algorithm). A short discussion of the 
relationship between the FIT approach and Nédélec or edge elements used in the FE method 
[Volakis et al., 1998] can be found in van Rienen [2001a, b]. Bossavit [1998, 2001] presented a 
more comprehensive discussion on edge elements and the generalized Whitney elements (Whitney 
forms). Analogous to FIT, the mixed FE method and the FE method with Whitney forms use a 
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dual-cell complex as well, which insures a consistent formulation. A tight link between FIT and 
mixed FEM, in the sense of differential geometry, is still an open problem for research [van 
Rienen, 2001b]. 
 

 

 
 
Figure 2. A typical setup applied in nondestructive testing/material characterization with  ultrasonic wave 
fields: a steel block with a perfect scatterer (back-wall-breaking crack with stress-free boundary). TX: 
transmitter; RX: receiver. 
 
 

 
 
Figure 3. A typical time history of a transient echo signal (A-scan; A: amplitude), received in a monostatic 
experiment: the echo signal from the ultrasonic scattering of a 45° shear wave by a back-wall-breaking crack 
(see Figure 2), computed with the EFIT. 
 
 In time-domain electromagnetics, the resulting discrete grid equations of FIT are, at least in 
“some” cases, identical to the discrete equations derived with the classical Yee method. This was 
introduced in the mid-1960s [Yee, 1966], and uses a coordinate-based staggered grid system and 
the famous Yee cell. In general, FIT includes the Yee method as a subset. In contrast to FIT, 
which is applied to the integral form of the field equations, the original Yee method is applied to 
the differential form of the governing equations: in electromagnetism, to the Maxwell curl 
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equations. Today, Yee’s method is well known as the Finite-Difference Time-Domain (FDTD) 
Method [Morgan, 1989; Kunz and Luebbers, 1993; Taflove, 1998; Taflove and Hagness, 2000; 
Sullivan, 2000; fdtd.org, 2001]. Yee et al. [1992] also started from the integral form of Maxwell’s 
equations, and derived a conformal FDTD method (see also [Yee and Chen, 1997a,b). The ideas of 
the FDTD method can also be applied to other wave-field phenomena. For example, Sullivan 
[2000] described the application of the FDTD in (linear) acoustics and quantum mechanics. 
Independent of these developments in electromagnetism, Virieux [1984, 1986] developed a similar 
method in elastodynamics, which uses all six components of the Cauchy stress tensor and all three 
components of the particle velocity vector. Schröder and Scott [2000] and Scott et al. [2001] 
utilized this technique to study the interaction of electromagnetic and elastodynamic waves for the 
application of buried land-mine detection. Historically, in the mid-1970s, Madariaga [1976] 
introduced the FDTD method on a staggered grid in elastodynamics. Saenger et al. [2000] 
proposed a modified version of this approach. As in the electrodynamics case, the elastodynamic 
FDTD scheme is contained in EFIT as a subset. 
 
 Fellinger and Langenberg [1990] adapted Weiland’s ideas to the governing equations of 
ultrasonic waves in solids, and developed a numerical procedure called the Elastodynamic Finite 
Integration Technique (EFIT) (see also [Fellinger, 1991; Fellinger and Marklein, 1991; Fellinger 
et al., 1995]). The acoustic pendant to EFIT, AFIT, is generally derived by applying FIT to the 
governing equations of acoustic waves in integral form [Marklein and Fellinger, 1991; Marklein, 
1997]. Stimulated by these developments, Wolter [1995] and Bihn [1998] implemented 
preliminary versions of AFIT and EFIT in the above-mentioned MAFIA code. Peiffer et al. [1997] 
and Schubert et al. [1998] derived a CAFIT and CEFIT algorithm for ultrasonic NDT problems 
with cylindrical symmetry (see also [Schubert, 2000; Schubert et al., 2001]). AFIT and EFIT have 
been further developed throughout the last decade to handle more complex media and geometries 
[Fellinger et al., 1995; Marklein et al., 1995, 1996, 1997, 1998; Marklein, 1997, 2000a, b; 
Marklein and Langenberg, 1998]. Today, AFIT and EFIT are widely used as well-accepted 
quantitative modeling tools in nondestructive testing [Langenberg et al., 1993, 1997, 1999, 2000, 
2002]. Schubert and Köhler [2001] extended EFIT to the nonlinear case. The electromagnetic 
counterpart of AFIT and EFIT is called EMFIT, and has been applied to diffraction problems 
[Langenberg and Marklein, 1994] and homogeneous anisotropic uniaxial and biaxial cases 
[Marklein et al., 1996; Marklein, 1997]. The acoustic, electromagnetic, elastodynamic, and 
piezoelectric cases are treated in a unified formulation in Marklein [1997] and Marklein et al., 
[1997, 2000a], as well as extended by the coupled electromagnetic-ultrasonic case in Marklein 
[2000b]. 
 
 Recent contributions to numerical modeling in electromagnetics can be found in the book 
edited by Teixeira [2001], which includes, among others, the following contributions: Bossavit 
[2001], Clemens and Weiland [2001], Mattiussi [2001], Tonti [2001b], Schuhmann and Weiland 
[2001], and van Rienen [2001b]. Mattiussi [1997, 2000] gives an overview of various methods 
applied to solve physical field problems using concepts of algebraic topology. From the viewpoint 
of topology, Teixeira and Chew [1999a] present a lattice theory for electromagnetism (see also 
[Teixeira and Chew, 1999b]). 
 
 In the following, we present the application of the “original” FIT, using the local wave field 
components (see, e.g., [Weiland, 1977; Fellinger, 1991; Marklein, 1997, 2000a, b]), like the 
discrete field components of the electric field strength and magnetic flux density, instead of global 
physical quantities, like the electric voltage and the magnetic flux (see, e.g., [Weiland, 1996]). 
(Note that the derivation presented can be easily reformulated in terms of global physical 
quantities.) We start with the three uncoupled cases – the acoustic, electromagnetic, and 
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elastodynamic cases – and then turn to the coupled piezoelectric and electromagnetic-ultrasonic 
cases, where we make use of the electro-quasistatic (EQS) approximation in the piezoelectric case, 
and the magneto-quasistatic (MQS) approximation in the electromagnetic-ultrasonic case [Haus 
and Melcher, 1989]. Both approximations can be considered to be low-frequency approximations 
of Maxwell’s equations in the electromagnetic part of the derived piezoelectric FIT (PFIT) and the 
electromagnetic-ultrasonic FIT (EMUSFIT) algorithm [Marklein, 1997, 2000a, b; Langenberg et 
al., 2002]. Typical examples for coupled field problems are the piezoelectric and electromagnetic-
ultrasonic transducers, as shown in Figure 18 (in Section 4). These are applied, e.g., in 
nondestructive testing (NDT) for the excitation and reception of ultrasonic waves. These 
ultrasonic antennas rely on the (linear) piezoelectric effect, the (linear) piezo-magnetic effect, the 
Lorentz force generation, and Ohm’s law for moving media.  
 
 
3. ACOUSTIC, ELECTROMAGNETIC, ELASTODYNAMIC, AND COUPLED WAVE  
    FIELDS 
 
3.1 FUNDAMENTALS OF ACOUSTIC, ELECTROMAGNETIC, ELASTODYNAMIC WAVE FIELDS 
 
 This section summarizes the governing equations, constitutive equations, transition/ 
continuity and boundary conditions in a unified way. Let 1 2 31 2 3 i ix x x x+ + == e eR e  be the 
position vector in Cartesian coordinates , i , with the three orthonormal unit vectors 

e

ix 1,2,3= ie , 

, in the three-dimensional Euclidean space R , and t being the time. Euclidean vectors, 
dyads, triads, and tetrads – in general, tensors of nth rank – are written as boldface letters 
underlined with one, two, three, and four lines. Boldface letters in curly and squared brackets 
denote algebraic vectors and matrices. 

1,2,3i = 3

 
 The governing field equations of (linear) acoustics, electromagnetics, and (linear) 
elastodynamics read, in differential form [Miklowitz, 1980; Ben-Menahem and Singh, 1981; Chen, 
1983; Achenbach, 1984; Auld, 1990; de Hoop, 1995; Marklein, 1997, 2000a, b; Royer and 
Dieulesaint, 2000a]: 
 

(Acoustics)   ( , ) ( , ) ( , )t p t
t
∂

= −∇ +
∂

j R R f R t     (1) 

      

     ( , ) ( , ) ( , )S t t h t
t
∂

= ∇ +
∂

R v R Ri     (2) 

 

(Electromagnetics) m( , ) ( , ) ( , )t t
t
∂

= −∇× −
∂

B R E R J R t    (3) 

 

     e( , ) ( , ) ( , )t t
t
∂

= ∇× −
∂

D R H R J R t     (4) 
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(Elastodynamics)  ( , ) ( , ) ( , )t t
t
∂

= ∇ +
∂

j R T R f Ri t     (5) 

 

     ( , ) sym{ ( , )} ( , )t t
t
∂

= ∇ +
∂

S R v R h R t    (6) 

 

p   [N/m2] Pressure j   [Ns/m3] Momentum density vector 

v   [m/s] Particle velocity vector S   [1] Scalar deformation 
f   [N/m3] Volume force density 

vector 
h   [1/s] Injected deformation rate 

E   [V/m] Electric field strength 
vector 

H   [A/m] Magnetic field strength vector 

D   [As/m2] Electric flux density 
vector 

B   [Vs/m2] Magnetic flux density vector 

eJ   [A/m2] Electric current density 
vector 

mJ   [V/m2] Magnetic current density vector 

T   [N/m] Cauchy’s stress tensor 
of 2nd rank (dyad) 

j   [Ns/m3] Momentum density vector 

v   [m/s] Particle velocity vector S   [1] Deformation tensor of 2nd rank 
(dyad) 

f   [N/m3] Volume force density 
vector 

h   [1/s] Injected deformation rate tensor of 
2nd rank (dayd) 

 
The gradient operator is indicated by the symbol “ ,” which is called the del or nabla or 
Hamilton operator [Tai, 1997]. The divergence and curl operators are denoted by “ ” and 
“∇× ,” respectively. The dot “ ” accounts for the single scalar product – single contraction of 
adjacent indices – and the cross “ ” mark is the cross product. No dots between vectors/tensors 
mean a dyadic product. This coordinate-free approach, in electromagnetics [Chen, 1983] and in 
elastodynamics [Ben-Menahem and Singh, 1981], stands in contrast to the widely used indicial 
notation, such as used by de Hoop [1995]. Let 

∇
∇i

i
×

( , ( , )t v R) = ∇ tD R ; then, the symmetric part of this 

dyad is indicated by 211sym{ ( , ( , ) )
2

t t= +D R D R D)} ( ,R t  , which is sometimes denoted by . 

The upper indicial notation “21” refers to the reordering of the unit vectors, which, for a dyad, is  
equivalent to the transposition, i.e., 

s∇

[ ]21( , ) , )t =n v R v n(R t . The dyads ( , )tT R , ( , t)S R , and 

( ,h R )t are symmetric, i.e., 21( , )t tT R( , ) =T R . 
 
 Equations (1) and (2) are the linear vectorial Newton’s law of motion and the scalar law of 
deformation rate, which are the governing field equations of (linear) acoustic waves in non-viscid 
fluids and gases. Equations (3) and (4) are the first two vectorial Maxwell’s equations, Faraday’s 
induction law and Ampère-Maxwell’s circuital law, which are the governing field equations of 
electromagnetic waves. Equations (5) and (6) are the linear vectorial Cauchy-Newton’s law of 
motion and the tensorial law of deformation rate, which are the governing field equations of 
(linear) elastodynamic waves in viscid fluids and solids. 
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 Obviously, all three pairs of first-order differential equations – Equations (1) and (2), 
Equations (3) and (4), and Equations (5) and (6) – exhibit the same structure. We find, on the left-
hand side of Equations (1)-(6), a first-order time derivative of one of the field quantities ( , )tj R  

and ( , )S tR , ( , )tB R  and ( , )tD R , ( , )tj R  and ( , )tS R
∇

. On the right-hand side of each equation, 
we find a differential operator – e.g., the gradient “ ,” divergence “∇ ,” curl “ ,” and the 
symmetric gradient operator “ ” – applied to one of the field quantities 

i ∇×

ssym{ }∇• = ∇ ( , )p tR  and 
( , )tv R , ( , )tE R  and ( , tH R ) , ( , )tT R  and ( , )tv R , representing the first-order spatial derivatives 

as well as source quantities ( , )tf R  and ( , )h tR , (fictitious) m ( , )tJ R  and e ( , tJ R ) , ( , )tf R  and 
( , )th R  at the outer right of each equation. Note that the Maxwell’s Equations (3) and (4) show an 

additional symmetry: in both equations, the curl operator is applied, which makes the formulation 
of a duality principle possible. 
 
 We now introduce constitutive equations, which characterize properties of the underlying 
materials. We restrict ourselves in the following derivation to linear, inhomogeneous, anisotropic, 
instantaneously and locally reacting media. 
 
(Acoustics)   a0( , ) ( ) ( , )t tρ=j R R v R  (7) ( , ) ( ) ( , )S t p tκ= −R R R  (8) 

 

(Electromagnetics) ( , ) ( ) ( , )t t=D R ε R E Ri  (9) ( , ) ( ) ( , )t t=H R ν R B Ri  (10) 

 

(Elastodynamics)  e0( , ) ( ) ( , )t tρ=j R R v R  (11) ( , ) ( ) ( , )t t=S R s R : T R  (12) 

a0ρ [kg/m3] Acoustic mass density at rest κ [m2/N] Compressibility 
ε [As/Vm] Permittivity tensor of 2nd rank 

(dyad) 
ν [Am/Vs] Reluctivity tensor of 2nd rank 

(dyad) 
e0ρ [kg/m3] Elastic mass density at rest s [m2/N] Compliance tensor of 4th rank 

(tetrad) 
 
The colon “ : ” in Equation (12), which is the generalized Hooke law [Miklowitz, 1980], denotes 
the double-scalar product with the property ( )(=a b : c d b c a di i ) , i.e., a double contraction of 
two index pairs, with the top dot tied to the adjacent indices, again. Of course, we could also treat 
more complex media, for instance, dissipative, inhomogeneous, anisotropic solid media. Examples 
can be found in the references listed at the end of this section. Coordinate-free representations of 
the material tensors can be found, for example, in Marklein [1997]. 
 
 For inhomogeneous materials with interfaces or for boundary-value problems, it is essential 
that the underlying transition/continuity or boundary conditions are insured. Suppose two media, 
(1) and (2), with different materials are separated by an interface, I, with unit-normal n  pointing 
from medium (1) into medium (2); then, for I∈R , we find for the three different cases: 
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(Acoustics)        (2) (1) ( , ) with interface sources
( , ) ( , )

source-free
t

p t p t


− = 


t R
n R

0
n R   (13) 

 

          (2) (1) ( , ) with interface sources
( , ) ( , )

0 source-free
g t

t t
−

− = 


R
R n v Ri in v  (14) 

 

(Electromagnetics)   (2) (1) m( , ) with interface sources
( , ) ( , )

source-free
t

t t
−

× − × = 


K R
n E R n E R

0
 (15) 

 

         (2) (1) e ( , ) with interface sources
( , ) ( , )

source-free
t

t t


× − × = 


K R
R n H R

0
n H  (16) 

 

(Elastodynamics)      (2) (1) ( , ) with interface sources
( , ) ( , )

source-free
t

t t
−

− = 


t R
n T R n T R

0
i i  (17) 

 

        (2) (1)
( , ) with interface sources

m{ ( , )} sym{ ( , )}
source-free

t
t t

−− = 


g R
n v R n v R

0
sy (18) 

 
t   [N/m2] Surface density of force 

vector 
g   [m/s] Surface density of injected deformation 

rate 
mK  [V/m] Magnetic surface current 

density vector 
eK  A/m] Surface density of electric current 

vector 
t   [N/m2] Surface density of force 

vector 
g   [m/s] Source density of injected deformation 

rate tensor of 2nd rank (dyad) 
 
In general, the surface sources on the right-hand side of Equations (13)-(18) are field-independent 
sources. If we replace medium (1) by a medium that is field-free, boundary conditions are needed 
for the fields, which are directly obtained from Equations (13)-(18) by deleting all field quantities 
with a superscript (1) and dropping the superscript (2). Then, the interface sources on the right-
hand side of Equations (13)-(18) vanish or define field-dependent sources. For instance, on a 
perfectly electrically conducting (PEC) boundary, ( , )t× R 0=n E  holds, and then 

e ( , ) ( , )t = ×K R n H R t  defines a field-dependent induced electric surface current density at the 
boundary. Note that in the discretization process, which is discussed below, only discrete field 
components that are continuous according to the continuity/transition conditions of 
Equations (13)-(18) should be allocated at the interfaces of material cells filled with different 
material properties, in order to implicitly insure the interface/continuity condition. 
 
 For the utilization of the Finite Integration Technique, we write down the governing field 
equations, Equations (1)-(6), in integral form by making use of Gauss’ and Stokes’ integral 
theorem, and insert the constitutive equations, Equations (7)-(12), as well as adding time-
integration schemes: 
 



                            11. The Finite Integration Technique as a General Tool...                              209 

(Acoustics)      a0 ( ) ( , ) ( , ) ( , )
V S V

t dV p t t dVρ
=∂

= − +∫∫∫ ∫∫ ∫∫∫R v R R dS f R� w V
 (19) 

 

        
0

0( , ) ( , ) ( , )
t

t
t t t′= + ∫R v R v R� dt′v      (20) 

 
        ( ) ( , ) ( , ) ( , )

V S V V
p t dV t h t dVκ

=∂
= − −∫∫ ∫∫∫R R v R dS R� iw∫∫∫  (21) 

 

        
0

0( , ) ( , ) ( , )
t

t
p t p t dt′= + ∫R R R�p t     (22) ′

 

(Electromagnetics)  m( , ) ( , ) ( , )
S C S S

t t
=∂

= − −∫∫ ∫ ∫∫B R dS E R dR J R dS� i iv t i   (23) 

 

        
0

0( , ) ( , ) ( , )
t

t
t t t′= + ∫B R B R� dt′B R     (24) 

 
        e( ) ( , )] [ ( ) ( , )] ( , )

S C S S
t t

=∂
= −∫ ∫∫ε R E R dS ν R Β R dR J R d�i i i i iv[∫∫  (25) t S

 

        
0

0( , ) ( , ) ( , )
t

t
t t t′= + ∫E R E R� dt′E R     (26) 

 

(Elastodynamics)     e0( ) ( , ) ( , ) ( , )
V S V V

t dV t t dVρ
=∂

= +∫∫∫ ∫∫ ∫∫∫R v R T R dS f R� iw  (27) 

 

        
0

0( , ) ( , ) ( , )
t

t
t t t′= + ∫R v R v R� dt′v      (28) 

 
        ( ) ( , ) sym{ ( , )} ( , )

V S V V
t dV t dS t dV

=∂
= +∫∫ ∫∫∫s R : T R nv R h R� w∫∫∫  (29) 

 

        
0

0( , ) ( , ) ( , )
t

t
t t t′= + ∫T R T R� dt′T R ,    (30) 

 
where  is the closed surface of the volume V . These three sets of Equations (19)-(22), 
(23)-(26), and (27)-(30) already illustrate the characteristic leapfrog structure. 

S V= ∂

 
 
3.2 DERIVATIONS AND ESSENTIALS OF THE NUMERICAL CODES: AFIT, EMFIT, AND EFIT 
 
 A typical transient simulation task is described by a known/assumed geometry and material 
configuration, as well as boundary conditions and antenna characteristics for the emitting and 
receiving modes. Different types of grid complexes can be used for the discretization in space, as  
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Figure 4. A discretization of the material in elementary material cells m , defining the material grid M. ( )n

 
 
 
 

 
 
Figure 5. The grid complex with the grid, G  (primary grid), and its dual grid, G  (secondary grid), as well as 
the material grid: (a) three-dimensional case and (b) two-dimensional case. 

�

 
indicated in Figure 4, e.g., a dual-coordinate-based cell complex, consisting of cubic cells, or dual 
simplicial cell complexes consisting of Delaunay triangles and Voronoi polygons (e.g., [Marklein, 
1997; Tonti, 2001a, b]). The reader is also referred to Schuhmann [1999], Hilgner [2001], and van 
Rienen [2001a, b]. In the following we restrict ourselves to a regular cubic cell complex consisting 
of a material grid complex M , a primal grid complex G , and a dual grid complex G  as shown in 
Figure 5. The original idea of Weiland [1977] was to use the multidimensional midpoint rule to 

i
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approximate the integral appearing in the governing equations. For a one-dimensional integral, as 
shown in Figure 6, we find the following approximation by standard Taylor-series expansion: 
 
 

 0

0

3
0( ) ( )

2 2
x x

x
xf x dx f x x O x f x x

+∆ ∆    = + ∆ + ∆ ≈ +       ∫ 0
x∆

∆




,   (31) 

 
where  denotes the approximation error. Note that the same approximation is used to 

discretize the one-dimensional time integral, see, e.g., Equation (20). Approximations of two- and 
three-dimensional integrals, like surface and volume integrals, are derived in a similar way (see, 
e.g., [ Marklein, 1997; van Rienen, 2001a]), which yields 

3( )O x ∆

 

 0 0

0 0

2 4
0 0( , ) , ( ) ( )

2 2
y x x x

y x
x xf x y dx dy f x y x O x

+∆ +∆ ∆ ∆   = + + ∆ + ∆    ∫ ∫  

           2
0 0, (

2 2
x xf x y x∆ ∆ + ∆

 
    (32) )≈ + 

 

 0 0 0

0 0 0

3 5
0 0 0( , , ) , , ( ) ( )

2 2 2
z x y x x x

z y x
x x xf x y z dx dy dz f x y z x O x

+∆ +∆ +∆ ∆ ∆ ∆   = + + + ∆ + ∆    ∫ ∫ ∫  

                3
0 0 0, , (

2 2 2
x x xf x y z x∆ ∆ ∆ + + ∆

 
)

≈ + . (33) 

 
A combination of Equations (31) and (32) or Equations (32) and (33), according to the governing 
Equations (19)-(30), always gives a second-order approximation ( ). 2( )O x ∆ 
 
 

 
 

Figure 6. The midpoint rule applied to a one-dimensional integral. 
 
 
 The application of the Finite Integration Technique (FIT), using a dual-cell complex in space 
and time, as shown in Figure 7, yields the following three sets of matrix equations. 
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Figure 7. The spatial and temporal grid complex of AFIT, EMFIT, and EFIT, and the allocation of the local 
discrete field quantities (also see Plate 3). 
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(Acoustics)       {  (34) � i k �( 1/ 2) ( 1/ 2) ( 1/ 21 1 1
a0 a0} [ ] [ ] [ ]{ } [ ] { }t tn n− −− − −= +v ρ R grad p ρ f� )tn −

−

tn

tnp

tn −

−

tn

)tnE

tn −

−

t tn n+

)tn




 
         { }     (35) ( ) ( 1) ( 1/ 2){ } { }t t tn n nt−= + ∆v v v�
 
         { }    (36) ( ) ( ) ( )1 1 1[ ] [ ][ ] { } [ ] { }t tn n− − −= − −κ div R v κ hp�
 
         { }     (37) ( 1/ 2) ( 1/ 2) ( ){ } { }t tn n t+ −= + ∆p p �
 
(Electromagnetics)   { }   (38) ( 1/ 2) ( 1/ 2) ( 1/ 2)1

m[ ] [ ]{ } { }t tn n− −−= − −B R curl E J�

 
         { }     (39) ( ) ( 1) ( 1/ 2){ } { }t t tn n nt−= + ∆B B B�

 
         {     (40) i k �( ) ( ) ( )1 1 1

e} [ ] [ ] [ ][ ]{ } [ ] { }t tn n− − −= −E ε R curl ν B ε J� ��

 
         { }     (41) ( 1/ 2) ( 1/ 2) ({ } { }t tn n t+ −= + ∆E E �

 

(Elastodynamics)      { (42) � k i �T( 1/ 2) ( 1/ 2) ( 1/ 2)1 T 1
v ve0 e0} [ ] [ ][ ][ ]{ } [ ] { }t tn n− −− −= +v ρ DIV R A T ρ f� ��

 
         { }     (43) ( ) ( 1) ( 1/ 2){ } { }t t tn n nt−= + ∆v v v�
 
         {    (44) ( ) ( ) ( )v 1 v

T T
} [ ][ ] [ ][ ]{ } { }tn −=T c R GRAD A v g� �
�

 
         { } .    (45) ( 1/ 2) ( 1/ 2) ({ } { }t tn n t+ −= + ∆Τ Τ T�

 
These are the so-called grid equations of AFIT, EMFIT, and EFIT in matrix form, which represent 
a one-to-one translation to the governing equations. The integer counter, n , denotes the time step, 
where the time is given by . Each of the above three sets of matrix equations, 
Equations (34)-(37), (38)-(41), and (42)-(45), represent a marching-on-in-time algorithm of “leap 
frog” type, which are of second order in space and time ( O x , ). In the above 

matrix equations, { , , , , , , , , , , , and {

t

{

tt t n= ∆

}f { }h

2( ) ∆ 

e{ }J { }v

2( )O t ∆
}T { }f}v { }p { { }B { }E m{ }J }g  are 

algebraic field vectors; [ ] , , , , , and [  are material matrices; , , 

, and [  are matrices containing the distances; [  and  are averaging matrices; 

and , , , , , and [ are topological matrix operators 

containing only the integers { , all on the primal and dual grid complex  and G . The 
topological operators insure essential vector analytic properties in the discrete grid space: 

�
a0ρ

[ ]curl

[ ]κ [ ]ε�

k[ ]curl

}1,0,1

�[ ]ν

k[DIV

�
e0[ρ

]

]
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T
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[ ]R
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i[ ]R
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v[R � ] v

TR �

div

]

[ ]

]

k[ ]grad
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   ∇×∇ = 0      (46) ⇔ kk[ ] [ ] [ ] [ ] [=curl grad curl grad 0]=

 



214                                                                René Marklein 

 
     ,   (47) 0∇ ∇× =i ⇔ jk[ ] [ ] [ ] [ ] [=div curl div curl 0]=

] ]

 
where the algebraic null matrix is denoted by [ .  ]0
 
 Note that the topological matrix operators [ ] , , , and [  in Weiland’s 

notation correspond to , , , and  [Weiland, 1996]. In practice, the computation of  
Equations (34) and (35), for instance, in two steps is avoided by inserting Equation (34) into 
Equation (35). This is also valid for Equations (36) and (37), and so on. 

curl k[ ]curl [div grad

C iC S �T
−S

 
 The transition/continuity conditions are implicitly ensured, and perfect and absorbing 
boundary conditions can easily be implemented in the discrete grid equations. As an example for 
an absorbing boundary condition, the perfectly matched layer (PML) can be implemented 
straightforwardly. Berenger [1994] introduced the PML in electrodynamics in the mid-1990s. 
Chew and Liu [1996] extended the PML to the elastodynamic case, and Yuan et al. [1999] 
proposed the PML in acoustics. Teixeira and Chew [1999b] presented a modern treatment of the 
PML in electromagnetics using differential forms. 
 

 
 
Figure 8. The numerical tools EMFIT, AFIT, and EFIT, and their interrelationships in the two-dimensional 
case. 
 
 AFIT, EMFIT, and EFIT are explicit hyperbolic time-domain solvers of the marching-on-in-
time type. Figure 8 shows the interrelationships of the three- and two-dimensional codes. For 
instance, in two-dimensional electromagnetics, we distinguish between the transverse electric (TE) 
and the transverse magnetic (TM) cases, and in two-dimensional elastodynamics, we distinguish 
between the pressure-shear vertical (P-SV) and shear horizontal (SH) cases. All scalar cases – the 
TE, TM, and SH cases – are strongly related to the two-dimensional acoustic case (see also the 
numerical examples in Sections 3.3.1 and 3.3.2). 
 
 One can also consider the above discretization procedure in the language of differential forms 
and algebraic topology. Then, the spatial discretization process is split into two steps. In the first 
step, global field quantities – like electric and magnetic voltages, as well as fluxes, particle fluxes, 
and forces assigned to geometric objects, e.g., lines and , surfaces and , and volumes L iL S iS
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V and V  – are introduced. This will generate an exact set of discrete metric-free matrix equations 
as an exact one-to-one translation of the analytical field equations. In the second step, 
approximations are needed for the discretization of the constitutive equations. The resulting 
operators can be identified as discrete Hodge operators in the language of differential forms, 
which contain the metric of the dual cell complex (see, for example, [Clemens and Weiland, 
2001]). It is also possible to work with quantities assigned to space-time objects, as presented in a 
different approach by Mattiussi [1997, 2000, 2001] and Tonti [2001a, b] (see also [Teixeira, 2001; 
Discrete Physics, 2001]). 

i

∆ ≤

( )c t

c

 
 Stability of the above schemes is insured for a regular Cartesian-grid complex if the 
following -dimensional – with the dimension  – Courant-Friedrichs-Lewy (CFL) 
condition [Courant et al., 1928; Richtmyer and Morton, 1967; Strikwerda, 1989; Gustafsson et al., 
1995] is insured: 

n {1, 2,3}n∈

 

 max
max

1 xt t
cn
∆

∆ =  with {A,EM,E}min
10

x
λ

∆ ≈ .   (48) 

 
The time step, , is a function of the grid cell size, . The spatial resolution, , of the 
regular Cartesian cubic cell complex is a function of the minimum wavelength min  in 
the acoustic (A), electromagnetic (EM), and elastodynamic (E) case. The time step, ∆ , also 
depends directly on the maximum propagation velocity, , which is, in fact, the maximum 
energy or group velocity in the region of interest. This property is very important if anisotropic 
materials are under concern [Fellinger et al., 1995; Marklein et al., 1995, 1996; Marklein, 1997; 
Langenberg et al., 2002]. 

t∆ x∆

mac

x∆
{Aλ ,EM,E}

t
x

 
 The spatial and temporal discretization introduces numerical errors – like artificial 
anisotropy, dispersion, and dissipation – even for isotropic, dispersion-free, and non-dissipative 
materials. For example, for a plane wave propagating in the i ik=k  direction, the following 
dispersion relation holds for the above numerical schemes: 

e

 

 2
2 2

1

1 1sin sin
2 2( )

n
i

i

k xt
x

ω

=

∆∆   =  
 ∆ ∆  

∑ ,     (49) 2 


 
with  being the propagation velocity [Fang, 1989; Marklein, 1997]. In practice, artificial 
dispersion is one of the main problems, especially if ten thousand time-steps are computed. To 
compensate for this numerical dispersion, one can use a flux-corrected approach, as proposed by 
Fei and Larner [1995]. 
 
 Further details, numerical results, and applications of AFIT, EMFIT, and EFIT can be found 
in Marklein [1997] (see also [Fellinger and Langenberg, 1990; Marklein and Fellinger, 1991; 
Fellinger, 1991; Fellinger and Marklein, 1991; Langenberg et al., 1993, 1997, 1999, 2000, 2002; 
Langenberg and Marklein, 1994; Fellinger et al., 1995; Marklein et al., 1995, 1996, 1997, 1998; 
Marklein, 1997, 2000a, b; Schuhmacher, 1997; Marklein and Langenberg, 1998; Kostka, 1999; 
Halkjær, 2000, Halkjær et al., 2000; Hannemann, 2001]). 
 
 

 



216                                                                René Marklein 

3.3. NUMERICAL EXAMPLES OF AFIT, EMFIT, AND EFIT 
 
3.3.1 Sommerfeld’s Half-Plane Problem Computed with AFIT and EMFIT 
 
 Figure 9 displays time-domain snapshots of a time-harmonic TE-polarized plane wave 
impinging on an infinitely thin perfectly electrically conducting half-plane. This is a classical 
diffraction problem, called Sommerfeld’s half-plane problem [Born and Wolf, 1989], which, in 
acoustics, is equivalent to a Neumann boundary-value problem for a vanishing normal derivative 
of the pressure on the half-plane. Modeling results for a time-harmonic plane-wave excitation, 
computed with 2D-AFIT/2D-TE-EMFIT, are given in the left, middle, and right of Figure 9, 
respectively. A validation of the numerical results is shown in Figure 10. Snapshots of the 
transient case for a broadband raised-cosine impulse are displayed in Figure 11. The validation of 
the FIT results against analytical results is presented in Figure 12. 
 
 

 
 
Figure 9. Sommerfeld’s half-plane diffraction problem: 2D-TE-EMFIT/2D-AFIT simulation results for 
cosine excitation (left: a, b, c, and d), sine excitation (middle: e, f, g, and h), and the magnitude of both 
simulations, representing the magnitude of a complex monochromatic excitation (right: i, j, k, and l). 
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Figure 10. Sommerfeld’s half-plane diffraction problem: validation of the 2D-TE-EMFIT/2D-AFIT results 
(left: a, c, and e) against analytical TE-Sommerfeld results (right: b, d, f) for a complex monochromatic 
excitation. a) Displays the time-domain result after reaching the stationary case compared to the frequency-
domain Sommerfeld result; c) and e) as well as d) and f) display vertical and horizontal cross sections.  
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Figure 11. 2D-TE-EMFIT/2D-AFIT time-domain field snapshots of the Sommerfeld half-plane diffraction 
problem in the  plane: magnetic field strength component  (top: a, b, and c), vertical electric field 
strength component  (middle: d, e, and f), and horizontal electric field component  (bottom: g, h, and 
i). 

xy zH

yE xE
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Figure 12. Validation of the 2D-TE-EMFIT/2D-AFIT results against TE-Sommerfeld solution: displayed are 
transient responses received at eight different locations on a circle with radius  centered at the tip of 
the half-plane, with  being the wavelength in free space. 

03r λ=

0λ

 
3.3.2 Shirai’s and Felsen’s Open-Ended Waveguide Problem Computed with AFIT and  
         EMFIT 
 
 Figures 13 and 14 illustrate the problem attacked by Shirai and Felsen [1987]: a TE-
polarized time-harmonic plane wave impinges and couples into an open-ended waveguide, 
composed of two infinitely thin perfectly electrically conducting planes. Displayed are time-
domain snapshots computed with 2D-TE-EMFIT/2D-AFIT. Their method of solution, which 
involves an intricate evaluation and decomposition of spectral integrals into rays and modes, is 
approximately valid for high frequencies. Figure 15 validates the EMFIT/AFIT solution against 
results obtained with the Shirai and Felsen approach. 
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Figure 13. Shirai’s and Felsen’s open-ended waveguide problem: time-domain snapshots of the TE-polarized 
plane wave coupling into the waveguide, computed with the 2D-TE-EMFIT/2D-AFIT code. 

 
 
Figure 14. Shirai’s and Felsen’s open-ended waveguide problem: time-domain snapshots of the TE-polarized 
plane wave coupling into the waveguide, computed with the two-dimensional TE-EMFIT/2D-AFIT code. 
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Figure 15. Shirai’s and Felsen’s open-ended waveguide problem: validation of the cross-section computed 
with the 2D-TE-EMFIT/2D-AFIT (top) against the cross section computed by Shirai and Felsen [1987] 
(bottom) at  from the opening of the waveguide. Note that a second GO beam appears in Figure 15b. 
This is because the GO beam in the original publication was a bit shifted. 

68kx =

 
3.3.3 Volume and Surface Line-Source Excitation of an Isotropic Solid Steel Block with 
   EFIT 
 
 Figure 16 shows two-dimensional EFIT results for the excitation of an isotropic solid steel 
block by a volume and surface line source. The time history of the broadband excitation pulse is 
given at the top of Figure 16. In Figure 16a, a vertically oriented line force excites cylindrical 
primary and secondary wave fields. Figure 16b shows Lamb’s problem, where the source is 
located at a stress-free surface. The primary and secondary wave fields are connected by head 
waves traveling with the speed of the secondary wave and, additionally, Rayleigh surface waves, 
with a slightly lower velocity than the secondary wave, are supported. Of course, these numerical 
results can be validated against the analytical solutions. 
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Figure 16. Time-domain 2D-P-SV-EFIT modeling results in the two-dimensional case, obtained for a 
broadband impulse displayed at the top: a) Impulsive elastodynamic wave fields excited by a vertically 
oriented line force radiating into an isotropic solid material; b) Impulsive wave field excited by a vertically 
oriented line force into a homogeneous isotropic solid half-space. 
 
3.3.4 Ultrasonic Transducer (Antenna) Modeling with EFIT 
 
 Figure 17 displays two-dimensional EFIT modeling results for different types of ultrasonic 
antennas (transducers), which are typically applied in nondestructive testing. The extension of the 
vertically oriented line force of Lamb’s problem in Figure 16b to a uniformly distributed, 
vertically orientated strip force in Figure 17a excites a dominant longitudinal plane wave – which 
is mainly used in the application – plus cylindrical pressure and shear vertical waves from both 
edges, as well as head waves and Rayleigh surface waves. If a linear delay is introduced into the 
driving force, different types of ultrasonic transducers can be modeled, as shown in Figures 17b-f. 
For instance, Figure 17e displays a shear 45º wave transducer, which is typically applied to the 
NDT situation in Figure 2, and generates an output as displayed in the plot shown in Figure 3. 
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Figure 17. Time-domain EFIT ultrasonic transducer modeling in the two-dimensional pressure-shear vertical 
(P-SV) case: a) longitudinal 0° wave transducer; b) longitudinal 30° wave transducer; c) longitudinal 70° 
wave transducer; d) subsurface longitudinal wave transducer; e) shear 45° wave transducer; f) Rayleigh wave 
transducer. 
 
 
4. COUPLED WAVE FIELDS: PIEZOELECTRIC AND ELECTROMAGNETIC- 
    ULTRASONIC WAVE FIELDS 
 
 This section presents a unified formulation of coupled electromagnetic-acoustic-
elastodynamic wave-field phenomena [Nelson, 1979; Auld, 1990; Lerch, 1990; Dai and Ludwig, 
1990; Roberts, 1991; Ludwig and Dai, 1991; Thompson, 1993, Campbell, 1998; Hashimoto, 2000; 
Royer and Dieulesaint, 2000a, b], which occur in many applications. Examples include surface-
acoustic-wave devices, applied in mobile and wireless communications, and piezoelectric and 
electromagnetic-ultrasonic antennas, as sketched in Figure 18, which are called ultrasonic 
transducers. Both types of antennas are applied to various applications, for instance, in non-
destructive testing and medical diagnosis with ultrasound. The typical frequency range and spatial 
dimensions of both transducer types allow the introduction of low-frequency approximations into 
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the electromagnetic field equations. This means that in the piezoelectric case, we apply the electro-
quasistatic (EQS) approximation, and in the electromagnetic-ultrasonic case, we use the magneto-
quasistatic (MQS) approximation, respectively. 
 
 

 
Figure 18. Different transducer types for exciting and receiving ultrasonic waves: a piezoelectric transducer 
(left) and an electromagnetic-ultrasonic (EMUS) transducer (right). 
 
 The governing equations for piezoelectric as well as electromagnetic-ultrasonic phenomena 
are the coupled equations for electromagnetic and elastic waves, given by Equations (3)-(6). 
Equations (3) and (4) are, in general, aided by the compatibility relations [de Hoop, 1995] 
 
 m( , ) ( , )t ρ∇ =B R Ri t       (50) 
  

 e( , ) ( , )t ρ∇ =D R Ri t .       (51) 

 

m ( , )tρ R  [Vs/m3] and e ( , )tρ R  [As/m3] are the magnetic and electric charge densities, and the 
magnetic and electric current and charge densities must fulfill the following continuity equations: 
 

 mm( , ) ( , )t
t
ρ

∂
∇ = −

∂
J R Ri t        (52) 

 

 ee ( , ) ( , )t
t
ρ

∂
∇ = −

∂
J R Ri t .       (53) 

 
From Equations (50) and (51), the following transition/continuity conditions are derived: 
 

 m(2) (1) ( , ) with interface sources
( , ) ( , )

0 source-free
t

t t
η

− = 


R
n B R n B Ri i ,   (54) 

 

 e(2) (1) ( , ) with interface sources
( , ) ( , )

0 source-free
t

t t
η

− = 


R
n D R n D Ri i ,   (55) 
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where m ( , )tη R  [Vs/m2] and e ( , )tRη  [As/m2] are the field-independent magnetic and electric 
surface charge densities. Note that boundary conditions are obtained via the same procedure as 
described above, where for a PEC boundary e ( , )tRη  is a field-dependent source and m ( , )tRη  
vanishes. 
 
 
4.1. PIEZOELECTRIC WAVE FIELDS 
 
 Piezoelectric waves, also called elasto-electric waves, rely on the following constitutive 
relations, which, for linear, homogeneous, anisotropic, instantaneously and locally reacting 
piezoelectric (pe) media [Berlincourt et al., 1964], read 
 
 S

pe
( , ) ( ) ( , ) ( ) ( , )t t= +D R ε R E R e R : S Ri t      (56) 

 
 E231

pe
( , ) [ ( )] ( , ) ( ) ( , )t t= +S R d R E R s R : T Ri t .     (57) 

 
Sε   [As/Vm] Permittivity tensor of 2nd 

rank (dyad) at const.=S  pe
e   As/m2] Piezoelectric coupling tensor of 3rd 

rank (triad) with E 1
pe pe

[ ]−=e d : s  

Es    [m2/N] Compliance tensor of 4th 
rank (tetrad) at const.=E  pe

d   [As/N] Piezoelectric coupling tensor of 3rd 
rank (triad) with E

pe pe
=d e : s  

 
The upper index notation “231” indicates the order of transposition of the unit vectors. A 
coordinate-free representation of the material tensors can be found in Marklein [1997]. 
 
 
4.1.1 Electro-Quasistatic (EQS) Approximation 
 
 If we assume that the typical dimension of the piezoelectric material is small compared to the 
electromagnetic wavelength – the low-frequency approximation for Maxwell’s equations – we can 

neglect the induction term in Faraday’s law, ( , )t
t
∂

=
∂

B R 0 . This allows us to represent the 

electric field strength by an irrotational gradient field 
 
 ( , ) ( , )t = −∇ΦE R R t ,        (58) 
 
with the scalar electric potential ( , )tRΦ  [V], where ( , )t∇× =E R 0  holds. This is the so-called 
electro-quasistatic (EQS) approximation [Haus and Melcher, 1989]. Finally, with the EQS 
approximation of Equation (58), we find, from Equation (51), by computing the first-order time 
derivative and Equations (56) and (6), an elliptic Poisson equation for the first-order time 
derivative of the scalar electric potential: 
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 S
epe

( ) ( , ) ( ) sym{ ( ,t)}- ( , )t t
t t

ρ
∂ ∂ ∇ ∇ Φ = ∇ ∇ ∂ ∂ 

ε R R e R : v Ri i i R ,  (59) 

 
where we assumed ( , )t =h R 0  for the source term in Equation (6). 
 
 
4.1.2 Piezoelectric Finite Integration Technique (PFIT) 
 
 Applying the Finite Integration Technique to the integral form of Equation (59) and the 
governing equations of elastodynamics, using a dual-grid complex as shown in Figure 19, we 
obtain the following set of piezoelectric grid equations in matrix form for the so-called current-
driven PFIT algorithm [Marklein, 1997]: 
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with  and { } . In the above matrix equations { , 

, , and {  are additional algebraic field vectors; [ ] , , , and [  are 

additional material matrices; [ ] , [ ] , [ , [ , [ , and [  are additional matrices  
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containing the finite distances, surfaces, and volumes, and [  and [  are additional 

averaging matrices. The matrix operator [  is an additional topological operator, which 
contains only the integer numbers { } . 

v
Φ

A � T
ΦA
�
�

GRad
1,0,1−

 
 In general, the PFIT comes in two versions, a voltage-driven and a current-driven version. 
The latter is usually combined with a one-dimensional network algorithm in order to take into 
account an impedance load. In fact, the PFIT is a coupled explicit elliptic-hyperbolic marching-on-
in-time solver of the leapfrog type. For the solution of the elliptic part of the algorithm, standard 
techniques, like a conjugate-gradient (CG) type of algorithm, can be applied. Details and results 
can be found in Marklein [1997, 2000a, b], Marklein and Glitza [1997], Marklein et al. [1998, 
1999], Marklein and Langenberg [1998], and Langenberg et al. [2002]. For the finite-element 
modeling of piezoelectric wave fields, see, for example, Lerch [1990] and Roberts [1991]. 
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Figure 19. The spatial and temporal grid complex of EQSFIT, EFIT, and PFIT, and the allocation of the local 
discrete field quantities (also see Plate 3). 
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4.2 ELECTROMAGNETIC-ULTRASONIC WAVE FIELDS 
 
 There are two different ways to excite ultrasonic waves in an electrically conducting solid 
material: either a Lorentz force distribution is excited or, if applicative, we make use of the piezo-
magnetic effect (biased magnetostrictive case). In the first case, a (magnetic) Lorentz volume 
force density, according to 
 
 m eed( , ) ( , ) ( , ) ( )t t t= = ×f R f R J R B R0       (65) 
 
is generated, where 0 ( )B R  is a static magnetic flux density, in general generated by a permanent-
magnet configuration. eed ( , )tRJ  is a transient electric eddy-current density (these flow in closed 
paths), given by Ohm’s law for a material at rest (approximation) 
 
 eed eσE( , ) ( , ) ( ) ( , )t t= =J R J R σ R E Ri t ,     (66) 
 
with the tensorial electric conductivity σ  [A/Vm]. 
 
 The properties of a linear, inhomogeneous, anisotropic, instantaneously and locally reacting 
piezo-magnetic (pm) media (also the biased magnetostrictive case) are given by the following 
constitutive relations [Berlincourt et al., 1964]: 
 
 S

pm
( , ) ( ) ( , ) ( ) ( , )t t= +B R µ R H R e R : S Ri t      (67) 

 
 H231

pm
( , ) [ ( )] ( , ) ( ) ( , )t t= +S R d R H R s R : T Ri t .    (68) 

 
Sµ   [Vs/Am] Permeability tensor of 2nd 

rank (dyad) at const.=S  pm
e  [Vs/m2] Piezomagnetic coupling tensor of 3rd 

rank (triad) with H 1
pm pm

[ ]−=e d : s  

Hs   [m2/N] Compliance tensor of 4th 
rank (tetrad) at const.=H  pm

d  [Vs/N] Piezomagnetic coupling tensor of 3rd 
rank (triad) with H

pm pm
=d e : s   

 
 In the reception mode, we take into account the effect of a moving electrically conducting 
material within the low-velocity approximation [Landau et al., 1984]. Then, Ohm’s law in 
Equation (66) reads 
 
 

e E eσvB0

0eed

( , ) ( , )

( , ) ( ) ( , ) ( ) ( , ) ( )
t t

t t t

σ

= + ×
J R J R

J R σ R E R σ R v R B Ri i
���	��
 �����	����


 .    (69) 

 
 
4.2.1 Magneto-Quasistatic (MQS) Approximation 
 
 If the typical dimension of the piezo-magnetic material is small compared to the 
electromagnetic wavelength – the low-frequency approximation for Maxwell’s equations – we can 
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neglect the displacement current in the Ampère-Maxwell circuital law, i.e., ( , )t
t
∂

=
∂

D R 0 . Further, 

let . Then, the magnetic flux density, m{ } {=ρ 0} ( , )tB R , is a solenoidal field, which can be 

represented as the curl of the magnetic vector potential ( , )tA R  [Vs/m], i.e., 
( , ) = ∇×A( , )t tB R R , where ( , ) 0t∇ A Ri =  must hold. Then, the electric field strength is given 

by 
 

 ( , ) ( , )t
t
∂

= −
∂

E R A R t .       (70) 

 

 This is the magneto-quasistatic (MQS) approximation, which results in a parabolic diffusion 
equation for the magnetic vector potential. With S S 1( )−=ν µ , this reads 

 

 S
0ei( ) ( , ) ( ) ( , ) ( , ) ( ) ( , ) ( )t t t t

t
∂ ∇× ∇× + = + ×    ∂

ν R A R σ R A R J R σ R v R B Ri i i , (71) 

 

where the electric current density is 
0e ei eσE eσvB( , ) ( , ) ( , ) ( , )t t t= + +J R J R J R J R t . In the 

excitation mode, Equation (71) is driven by ei ( , )tJ R  as the impressed electric current density in 
the RF coil, while 

0eσvB ( , )tJ R  is usually neglected in the excitation mode. In the reception mode, 

the driving term is given by 
0eσvB ( , )tJ R , while ei ( , )tJ R  is assumed to be zero. 

 
 
4.2.2 Electromagnetic-Ultrasonic Finite Integration Technique (EMUSFIT) 
 
 Applying the Finite Integration Technique to the integral form of Equation (71) and the 
governing equations of elastodynamics, using the dual-grid complex as given in Figure 20, yields 
the grid equations of the electromagnetic-ultrasonic FIT (EMUSFIT) in matrix form. In particular, 
if we neglect the outer right term in Equation (71), the discrete form of Equation (71) in integral 
form reads 
 
i k � � � � � �S ( 1) ( 1) ( 1) ( 1)1

ei 0[ ][ ][ ][ ] [ ]{ } [ ][ ]{ } [ ]{ } [ ][ ]{ }t t tn n n+ + +− + = + ×R curl ν R curl A S σ A S J S σ v B� tn +

}

]

(72) 
 
with the property . In the above matrix equations { , ,  are 

additional algebraic field vectors and [  and [  are additional material matrices. 

j ( 1)[ ]{ } {tn + =div A 0

�ν

}A ei{ }J 0{ }×v B
S

]σ
 
 Introducing a first-order backward finite-difference approximation in time in Equation (72), 
the MQSFIT grid equation can be written in standard matrix form [ , which can be 
solved with a standard algorithm, like a conjugate-gradient (CG) algorithm. A comprehensive 
study of other solution methods can be found in Clemens [1998], Clemens and Weiland [1999, 

]{ } { }=A x b
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Figure 20. The spatial and temporal grid complex of MQSFIT, EFIT, and EMUSFIT, and the allocation of 
the local discrete field quantities (see also Plate 4).  
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2001], and Clemens et al. [2001]. In total, EMUSFIT is a mixed explicit elliptic-parabolic-
hyperbolic marching-on-in-time solver, consisting of an elliptic magnetostatic (MS) solver 
(MSFIT), a parabolic magneto-quasistatic (MQS) solver (MQSFIT), and the hyperbolic EFIT 
solver. The MSFIT is used to compute the magnetostatic field generated by a permanent magnet 
configuration as shown on the right of Figure 18. 
 

 In the excitation mode, Equation (72) is solved for the magnetic vector potential { } . 
From that we compute the electric field strength via Equation (70), and the so-called eddy current 
density via Equation (66). With a superimposed magnetostatic field, a resulting Lorentz force via 
Equation (65) excites an elastodynamic wave field. In the reception mode, according to 
Equation (69), the driving term in Equation (72) is the electric eddy current “induced” by the 
incident elastodynamic wave field. Then, the resulting vector potential from Equation (72) and the 
electric field strength from Equation (70) determine the induced electric voltage in the RF coil (see 
the right-hand side of Figure 18). 

( 1)tn +A

 
 Note that the counterpart of the time-independent version of Equations (50) and (51) reads 
 
         (73) m[ ]{ } {=div B ρ }

}

} ]

} 0

   
 ,        (74) j

e[ ]{ } {=div D ρ
 
where  and {  are additional algebraic field vectors, and [  is an additional algebraic 
topological operator, which contain only the integers { } . 

{ }D mρ jdiv
1,0,1−

 
 This makes it clear that the Finite Integration Technique (FIT) can also be applied to 
electrostatic and magnetostatic field problems as well, as pointed out by Weiland [1996]. For 
instance, Equation (73) is used for { }  (and { } ) to compute the magnetostatic 
flux density {  generated by a permanent magnet based on a scalar magnetic potential 
approach, where inside the permanent magnet an impressed magnetization is assumed. For the 
finite-element modeling of an electromagnetic-ultrasonic transducer see, for example, Dai and 
Ludwig [1990] and Ludwig and Dai [1991]. 

m {=ρ 0 m { }=J

0}B

 

 
 
Figure 21. The PFIT (left) as a combination of the EQSFIT and EFIT, and the EMUSFIT (right) as a 
combination of the MSFIT, MQSFIT, and EFIT. 
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 Figure 21 summarizes both algorithms: Essentially, the PFIT is a combination of the elliptic 
EQSFIT solver and the hyperbolic EFIT solver, and the EMUSFIT is a subsequent combination of 
the elliptic MSFIT solver for the magnetostatic flux density 0 ( )B R , generated by a permanent-
magnetic configuration, and the coupled parabolic MQSFIT solver, for the magnetic vector 
potential, and the hyperbolic EFIT solver for the ultrasonic wave propagation. Numerical results 
are presented in Marklein et al. [1999] and Marklein [2000a, b].  
 
 
4.3 NUMERICAL EXAMPLES 
 
4.3.1 Piezoelectric Disk Transducer Modeling with PFIT 
 
 Figure 22 shows the modeling of a piezoelectric transducer coupled to a solid brass cylinder 
with a back-wall-breaking crack. The comparison between the modeled and experimental 
piezoelectric voltage observed at the piezoelectric disk given in Figure 22 shows an agreement 
between the numerical and physical world. The dominant echo signals are the excitation pulse 
(EP), the notch echo (NE), and the first back-wall echo (BE1). Time-domain snapshots of the 
particle velocity vector are displayed in Figure 23 showing the ultrasonic wave propagation and 
the generation of the so-called notch echo signal and back-wall echo signal. 
 
 
4.3.2 Electromagnetic-Ultrasonic Transducer Modeling with EMUSFIT 
 
 Figure 24 displays the numerical modeling of the excitation of a shear horizontal (SH) plate 
wave excited by an electromagnetic-ultrasonic transducer. The relatively long elastic waveguide is 
displayed in a stack of two subfigures. This transducer type generates a bi-directional wave field, a 
dispersion-free plane SH wave followed by higher order SH modes, as shown in the middle of 
Figure 24. The wave field is absorbed at both ends by an absorbing boundary condition. The SH 
wave field, which travels to the right, hits the surface breaking crack and is reflected back to the 
transducer. A comparison between the numerical result and experimental measurement is given at 
the bottom of Figure 24 reflecting the validation of the simulated echo signals. 
 
 
5. CONCLUSIONS 
 
 This article reviewed the application of the Finite Integration Technique in acoustics, 
electromagnetics, elastodynamic, and coupled-wave-field problems, such as piezoelectric waves 
and electromagnetic-ultrasonic waves. In particular, this review tried to present the topic under 
consideration in a unified way, starting from the sets of field equations, constitutive relations, and 
transition/continuity as well as boundary conditions, up to the sets of discrete grid equations. This 
unified presentation will give a deep insight into the physical similarities between the different 
phenomena and their numerical treatment. 
 
 Due to the limited space and the various wave-field phenomena, it was impossible to cover 
all features of the Finite Integration Technique and its application to the time-domain computation 
of wave fields. The author hopes that this review paper will be informative to a broad audience, 
and will give the reader an overview of the Finite Integration Technique (FIT) applied to simulate 
wave fields of different kinds, and of the developed tools, which are applicable for the numerical 
solution of uncoupled/coupled field problems. In fact, the computation of coupled-field problems  
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Figure 22. An ultrasonic piezoelectric Pz27 disk transducer on a brass cylinder with a back-wall-breaking 
notch. A photograph and the two-dimensional geometry for the two-dimensional PFIT modeling are given at 
the top. In the middle and the bottom figures a comparison between the computational result (a) and the 
experimental signal (b) is shown. The electric voltage response, , at the Pz27 disk (A-scan) for a resistive 

load of  and a sine-pulse excitation, with u ,  cycles, and  is displayed.  
EP: excitation pulse; NTE: notch tip echo; BE1: first back-wall echo. 

piu

n =g 50R = Ω 0 10 V= 2 c 2 MHzf =
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Figure 23. An ultrasonic piezoelectric Pz27 disk transducer on a solid brass cylinder with a back-wall-
breaking notch: time-domain wave field snapshots of the two-dimensional PFIT modeling. 
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Figure 24. Time-domain EMUSFIT modeling results in the two-dimensional case. (a) The geometry of the 
solid plate – waveguide – with transducer and surface-breaking crack. (b) Two-dimensional SH-EMUSFIT 
time-domain snapshots. (c) and (d) display a comparison of the modeled and measured echo signals received 
in pulse-echo mode. (The measured A-scan is courtesy of G. Hübschen, Fraunhofer Institute for 
Nondestructive Testing, Germany.) 
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is increasingly needed for studying interdisciplinary wave-field effects in science and engineering, 
as well as related disciplines. 
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