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Electromagnetic and elastodynamic point source excitation
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Abstract. Plane electromagnetic as well as plane elastodynamic waves in anisotropic
media exhibit a different direction of their phase and energy propagation, resulting in
slowness and group velocity surfaces. Of course, the availability of plane wave solutions
gives rise to a spectral plane wave decomposition of point source excitations, i.e., Green’s
functions. Unfortunately, the coordinate-free closed-form solution of dyadic (electric)
Green’s functions in the Rw space is only known for electromagnetic (generalized)
uniaxial media. Utilizing the relation between phase and group velocities of plane waves in
uniaxial media we have been able to show that the phase and amplitude of the Green’s
function is related to the group velocity; i.e., time domain wave fronts reproduce group
velocity surfaces. This has also been verified through numerical results obtained by the
three-dimensional (3-D) electromagnetic finite integration technique code. In
elastodynamics, where similar analytical results for anisotropic media are not available, we
confirm this behavior with our numerical 3-D elastodynamic finite integration technique
code. For electromagnetic uniaxial media, we present an analytic method to derive the
dyadic far-field Green’s function in Rw space from Kw space directly by utilizing the
duality principle between wave vectors and ray vectors without performing the 3-D inverse
Fourier transform from Ko space to Rw space analytically.

Introduction

Volume sources, or equivalent surface sources
based on a mathematical formulation of Huygens’
principle, which radiate into unbounded ‘media re-
quire the knowledge of “free space” Green’s func-
tions for computational purposes. In particular, in
nondestructive testing with ultrasound, anisotropic
materials like fiber-reinforced composites or auste-
nitic welds have recently found considerable practical
interest [e.g., Thompson and Chimenti, 1996], but
unfortunately, the knowledge concerning explicit
mathematical expressions for appropriate Green’s
functions (tensors), even for the simplest case of
transverse isotropy, is still very sparse. Therefore, it is
not even possible to evaluate the radiation pattern of
“yltrasonic antennas” for such materials, because the
far-field directivity of Green’s tensors would be needed.

In order to assess some conjectures concerning the
mathematical far-field structure of elastodynamic
Green’s tensors for anisotropic media, we have a
closer look at their electromagnetic counterparts.
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Especially for electromagnetically uniaxial anisotro-
pic media, the Green’s dyadic is explicitly known in
the spatial domain, and a novel concept to evaluate its
far field can therefore be analytically confirmed. For
electromagnetically biaxial anisotropic and elastody-
namically transverse isotropic media we propose the
same procedure, especially since numerical results
confirm some of our conjectures.

General treatments of electromagnetic waves in
anisotropic media can be found in various textbooks
[e.g., Felsen and Marcuvitz, 1973; Chen, 1983; Lindell,
1992]. A coordinate-free closed-form solution of the
“free-space” dyadic Green’s function has been given
by Chen [1983] for uniaxial homogeneous media and
by Weiglhofer [1990] for general uniaxial media. Sev-
eral analytic methods and dyadic Green’s functions
have been collected by Weiglhofer [1993]. Recently,
properties of the dyadic Green’s function for biaxial
media have been discussed by Cottis and Kondylis
[1995], and Green’s dyadics for a special class of
bianisotropic media have been presented by Lindell
and Olyslager [1995]. The dyadic Green’s function and
radiation in uniaxially anisotropic media, especially
the asymptotic evaluation of the integrals using a
method developed by Lighthill [1960], and the far-
field of an electric dipole were studied by Chen
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[1973]. The dipole radiation into a homogeneous
anisotropic medium was studied by Mittra and De-
schamps [1963] using the pole extraction method in
the spectral domain.

In elastodynamics [e.g., Ben-Menahem and Singh,
1981; van der Hijden, 1987; Tverdokhlebov and Rose,
1988], similar results for the dyadic and triadic
Green’s functions in Rw space are unknown. Only for
transversely isotropic media the dyadic and triadic
Green;s functions in Kw space have been given by
Spies [1994a].

The basic ideas of this paper are enumerated as
follows:

1. Suppose, an explicit representation of a
Green’s tensor is known in a spatial spectral domain
given by the three-dimensional (3-D) Fourier vector
K (K space). In any case, this representation is
structured as follows: A dyadic K function operates
on the Fourier spectrum of a scalar Green’s function,
which is singular on the phase velocity surface, the
Ewald surface, which is the Ewald sphere for isotropic
media.

2. The 3-D Fourier inverse of the scalar Green’s
function exhibits wave fronts (Huygens-type wavelets)
in the space time domain, whose spatial geometry is
identical to the group or energy velocity surface (wave
surface).

3. In space time domain the dyadic K prefactor is
a dyadic differential operator, whose result for the far
field would be needed to yield the directivity pattern
of Green’s dyadics.

4. Inisotropic media with the wave number k, the
stationary phase evaluation of the Fourier inverse
yields K = kR with R being a unit vector into
observation direction. This means that in a particular
R direction, only those spectral components that
reside in the neighbourhood of that direction in K
space contribute significantly. For anisotropic mate-
rials the stationary phase evaluation is generally by no
means straightforward, but experience with the iso-
tropic case suggests that selection of a certain energy
propagation direction (ray vector direction) requires
K space integration around the pertinent wave vector
direction, which is given by the phase velocity surface.
Since rays and wave vectors are not parallel, their
respective angle has to be evaluated, and this can be
achieved applying the duality principle.

The above steps will be analytically confirmed for
the electromagnetic uniaxial case. Throughout the
paper all material parameters are assumed constant
in the frequency regime. Vectors, dyadics, and tet-
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radics appear boldface, sans serif, and sans serif with
underline. A coordinate-free notation is used.

Green’s Dyadics in Electromagnetics

For unbounded homogeneous, lossless, and non-
magnetic anisotropic media characterized by a rela-
tive permittivity tensor €, with u, = 1, if a time
dependence ~ exp (—jwt) is assumed, the “general-
ized” Maxwell equations are [e.g., Chen, 1983]

JopoH(R, 0) =V X E(R, 0) + Jn(R, ), (1)

joegoe, * E(R, w) = =V x H(R, ) + J.(R, ), (2
with the constitutive relations

B(R, w) = poH(R, ), (3

D(R, ») = gg€; * E(R, w). 4)

The vector fields E, H, D, B, J,,, and J, stand for
electric field, magnetic field, electric flux density,
magnetic flux density, magnetic current density, and
electric current density. R is the position vector, and
o is the circular frequency; po and gy denote the
permeability and permittivity of free space resulting
in the phase velocity cq = 1/V ugey.

A volume source for an electric dipole is defined by
the electric current density

Je(R, 0) = —jup(w)3(R)p, )

where p(w) is the Fourier spectrum, 8(R) is the 3-D
Dirac delta function, and p is a unit vector. Then the
radiated electric field is given by '

ER, ) =jopg f Ge(R-R',0) * J.(R",w) d°R’, (6)
v
ER, 0) = 0*1op(0)G,(R, 0) * P, (7

with the dyadic (electric) Green’s function G,. The
far field of the electric field is then

E®™(R, 0) = 02up(0)GH (R, w) * p. (8)

Homogeneous Isotropic Media

For homogeneous isotropic media with €, = &l the
dyadic (electric) Green’s function G;*° satisfies the
differential equation

[VV — (A~ kgeo)l] - GI°(R-R', ) = I5(R—R’), (9)
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where A is V*V, | is the unit dyadic or idemfactor
defined by | = §;e;e; utilizing the summation con-
vention with §;; as the Kronecker symbol, and ko =
w/c is the wave number of free space. A 3-D Fourier
transform of Green’s dyadic according to

Ge(K, 0) = J‘W G¢(R, @) exp (/K * R) d°K (10)

yields
[(K? - kje:)l - KK] - G(K, o) = |
— (11)
WK, 0)
or
GE(K, 0) = [WP(K, w)] 7!+, (12)

where V WI0(K, w) is the so-called wave dyadic. (From
det {W (K w)} = 0 we can derive wave vectors
1,,(K) wave numbers k,,(K) slownesses s,,(K)
phase velocities cpp, 7,(K) group velocity vectors
Cgr, 7,(K), energy velocity vectors cg .,,(K), and ray
vectors I,,(K) cg”,(K)/w for each wave mode ;
isotropic media, one ordinary mode o; uniaxial me-
dia, one ordinary mode o and one extraordinary
mode e; and biaxial media, two extraordinary modes
el and e2.) For isotropic media the inversion of the
wave dyadic can be performed analytically, giving

éiso(K, 0) = [WLW—I(K, )]}, (13)
e ( ’w)_ kger Kz—kger’ ( )
G°(K, 0) = D°(K, 0)G{°(K, 0). (15

After an explicit 3-D inverse Fourier transform we
obtain the Rw representation

o 1 exp (jos:R/co)
GH(R, w) = (| + e \AY = , (16)
GH(R, w) = D¥(V, 0)G*(R, w). (17)

For isotropic media, the far-field representation of
the dyadic Green’s function can be evaluated in the
following two ways:

1. Evaluate VV in (16) for kgR >> 1 and retain
only 1/R terms. We obtain therefore

far

V > jko Je.R. (18)
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2. Perform a 3-D Fourier inversion of GE°(K, )
in (14) with stationary phase arguments, which yields

far

K = ko |e.R. (19)

For (16) we obtain with (18) the far-field representa-
tion in Rw space

y exp(je \e:Rico)

iso,far —_
Ge (R, ) = (I - RR) 4mR , (20)
G(i!so,far(R, w) = D;so,far(l“{)Giso,far(R, ), (21)
and in the time domain (R¢ space)
_ .. 8(t — \e-Rlco)
iso,far = (] —
™R, 1) = (I~ RR) — ———,  (22)
G iso,far(R’ t) - Diso,far(l“l) G iso,far(R, t), (23)

with 8(x) being the 1-D Dirac delta function. Equa-
tions (14) and (22) show explicitly that phase surfaces
in Ko space (Ewald spheres) are wave fronts in Rt
space.

Now the idea, based on (19) and the knowledge of
the scalar Green’s function, is to get the far field
without 3-D Fourier inversion of the wave dyadic

WK, w).
Homogeneous Uniaxial Anisotropic Media

For uniaxial media the differential equation for the
dyadic Green’s function reads,

(VV — Al — kZe™™) - GI™(R - R’; ») = I6(R — R’),
(24)
with the relative permittivity tensor
efM=g,l+ (e —£,)e, (25)

where ¢ is the optical axis that is an eigenvector of

'™ corresponding to the eigenvalue g, and €, is the
other eigenvalue of e;™. The wave dyadic has the
form

WK, 0) = (K * K~ kZs.) - KK + (e, — epk3ee.
(26)

The electromagnetic wave field in uniaxial media
separates into an ordinary (o) and an extraordinary
(e) wave mode. For each mode we evaluate analyti-
cally from the dispersion equation
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det {W (K, w)} = k2(k2e, — K * K)
“(kje ey — K- €™+ K) =0 27
0 [l r
the wave numbers
Ko =koer, (28)
o ELE|
K.(K) = ko =——r—, (29)
K-e K
group velocity vectors
. Co
cgr,o(K) = : K, (30)
-
ct .
Cyre(K) = —— €™+ K, (31)
w 8_[_8”

which equal the energy velocity vectors, and ray
vectors

A c A
I,(K) = —— K, (32)
W+\E |
(R) = — 0 gmi. g (33)
2 r
w 8_]_8”

The above expressions for the extraordinary mode
exhibit explicitly the dependence on the permittivity
tensor and the propagation direction.
Determination of the inverse-of the wave dyadic in
(26) yields the dyadic (electric) Green’s function for
uniaxial media in Ko space; it reads [Chen, 1983],

(K X &)(K x &) 1
(Kx¢e&)? K-

GI(K, w) =

2
k08_1_

(Kxe)Kx¢)

k2 g (K x ¢)2
1
K- K-kleie| (39
G:"(K, w) = D5(K, w)GLy(K, o)
+ DK, 0)GU(K, w), (35)

with the dyadic prefactors and the scalar Green’s func-
tions for the ordinary mode DE%(K, ), G (K, w) and
extraordmary mode Dé"e“(K w), G unl(K ). The
explicit 3-D inverse Fourier transform of (34) with
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respect to K has been given by Chen [1983]. The
obtained dyadic Green'’s function in Rw space reads
for the ordinary mode,

Y=

Co

Gunl(R )

R x &) (R x @) 1 1 ¢ 1

x + —_— ~
(R x &)? jkoR € cgrp (R X &)2
R x &R x&)]] exp[joR/cy,]
- -2 ——n s PUO erol, (36)
(R x¢) 4mR/c g
GIP(R, w) = DR, )G U(R, v), (37)

and for the extraordinary mode

&

1

Gum(R

A . n’ _1
(™)

RxORXY [ 1 cpe® 1 2 R
(R x &)2 jkoR ¢y k2R? ¢}
2 A
Core(R)

35— el (e 1 RR - (177!
Co
~ 2 A
1 cgr,e(R) 1 Cgr’e(R) ( unl) -1
e €

jkoR co  kER? & |°H

1 1 Co 1

~ jkoR £) cgre(R) (R x 2)2

} exp [jwR/C g (R)]

(R x ¢&) 47rR/cgr,e(R) ’
(38)
G““‘(R w) = Dé‘m( w)G“m(R w), (39)
with the group velocities (see (53) and (55))

Co

Cgro = \/T , (40)
4

N Co 1
Core(R) = (41)

\/Sisll \/ﬁ . (e;mi)—l . R

This clearly shows that the phase and amplitude of the
scalar Green’s functions G ¢, (R, ») and G ¢ (R, w) is
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zy plane at z = 0:
(a) Group velocity surfaces

yz plane at ¢ = 0:
Group velocity surfaces
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zz plane at y = 0:
Group velocity surfaces
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Figure 1. Positive (¢) > &, ) uniaxial medium with & = e, and g = 4¢, . (a) Group velocity surfaces
of the ordinary mode o and extraordinary mode e. (b) Three-dimensional ANA [E| snapshots of wave
fronts at time point ¢ = ¢, radiated by an electric dipole given by J, (R, t) = frc(£)(R)p with p = e,
and a center frequency of f, = 10 GHz. (c) Three-dimensional EMFIT |E| snapshots of wave fronts at
t = t; = 200A¢ of the same source. EMFIT parameters are spatial domain size, 40 cm X 40 cm X 40
cm; uniform grid with mesh width Ax = 2 mm; total grid size, 2003 voxels = 2013 nodes; time step
width; At = 0.5Ax/cy = 3.33 ps. The applied 3-D EMFIT code is of second order in time and space.

related to the group velocities in (40) and (41). This
has been called spatial scaling by Felsen and Marcuvitz
[1973], and it can be independently derived with the
Cagniard—-de Hoop method [e.g., de Hoop, 1960; van
der Hijden, 1987] even for the biaxial case.

We exploited Chen’s formulas to compute wave-
front snapshots of E in the time domain; therefore we
use the short-term 3-D analytical (ANA). Figure 1
displays group velocity surfaces related to computed
wave fronts of the 3-D ANA |E| snapshots according
to Chen’s formulas and the 3-D EMFIT |E| snapshots
of the 3-D electromagnetic finite integration technique
(EMFIT) code [Marklein, 1994] for a transient elec-
tric dipole excitation, ie., [E| = VEZ + EZ + EZ.
The time history of the transient electric dipole is
prescribed by a raised cosine function with two cycles,
called RC2 pulse, defined by

[1 - cos (af.t)] cos 2nf.t)

0 otherwise’

0<t<T
fre2(t) =

(42)

with the center frequency f,. and the pulse length T =
2/f, (see Figure 2). The EMFIT code is a 3-D time
domain modeling code based on Maxwell’s equations

LA
N, _\/_

tinT

Figure 2. Time history of the RC2 pulse.
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Figure 3. The duality principle illustrated for the extraordinary mode of a negative uniaxial medium:
(a) the wave vector surface normalized to k, and (b) the ray vector surface normalized to 1/k,,.

in Rt space in integral form. The EMFIT algorithm
compares to the solution of Maxwell’s equations by
the finite integration algorithm (MAFIA) [MAFIA
Collaboration, 1991; Bartsch et al., 1992], which in the
time domain is essentially the well-known finite dif-
ference time domain method [Taflove, 1995]. Figure 1
confirms for the uniaxial case that plane wave group
velocity surfaces represent wave fronts in the time
domain.

Application of the Duality Principle

In order to calculate radiation patterns of sources
radiating in uniaxial media independently from
Chen’s [1983] formulas (equations (36)-(39)), we take
advantage of the duality between wave vector surfaces
and ray vector surfaces, called the duality principle
(DP) [Chen, 1983]. Figure 3 shows this duality for the
extraordinary mode. For the plane wave ansatz ac-

cording to
E(R, w) = E¢(w) exp (JK * R), (43)
H(R, 0) = Ho(o) exp (jK * R), (44)

we write Maxwell’s equations as a function of K and
1 separately, which defines the following two sets of
equations:

Set 1

1
Do(w) = - ; K x Ho(w), (453)

1
By(w) = " K x Eg(w), (45b)

Dy(w) = gg&; * Eg(w), (45¢)
By(w) = poHop(w), (45d)

K Dy(w) X By(w)
o Eo(@) - Dol@) (43¢)

Set 2

Eo((x)) = —wl X B()(a)), (45f)
Ho(w) = wl X Do(w), (45g)
Eo(w) = (g08;) ' * Dy(w), (45h)
Ho(w) = pg 'Bo(w), (45i)
ol = E()(w) X Ho((x)) (45])

" Eg(0) * Dy(w)

Either set can be obtained from the other by inter-
changing the symbols in the following way:

Dy(w) & E¢(w), (46)

By(w) & Hop(w), (47)
1
—K & ol (48)
w

g0€; & (80€;) _1; (49)
ro & 1/p. (50)

Relations (49) and (50) define also

co < 1/cy.

(51)



MARKLEIN ET AL.: POINT SOURCES IN ANISOTROPIC MEDIA

At first we use the duality principle to derive the
amplitudes of the ray and group velocity vectors from
(28) and (29): We derive for the ordinary mode

Iy = wcol e, (52)
Coro = co/ \/Z, (53)
and for the extraordinary mode

L) = 0 —— 1 (54)
elle) = @ : i

Verep |l + (e 11,

1

cgre(l ) = (55)

\/ELEH \/‘ uni)—l 'ie
To evaluate far-field relations for the two modes (like
(19)), we write for each mode the K, as a function of
the ray vector I, and identify (or replace) the unit ray
vector l77 with the observation vector R.

For the ordinary mode we apply DP to (33) and get
the K vector

Ko(io) = k(%ello(io), (56)

or with (52)

Ko(io) =k0€J.io- (57)

Now we identify the unit ray vector 1, with observa-
tion direction R and find the far- ﬁeld approximation
for the K vector of the ordinary mode

far

K, = ko ye R (58)

The K vector of the extraordinary mode is given from
(33) via DP, i.e,,

w?

e(l) = SJ_EH( uni)—l * le(ie)-
0

(59)

With ¢, = /0 and (55), the K vector has the form

A

Corelle) . .
grere (sum)—l.le'

r

(60)

K. () =— g, g|
co

Identification of the unit ray vector 1, with the
observation direction R yields the pendant to (58) for
the extraordinary mode,

A

far Core (R)

K. > kogje (s;mi)_1 *R.

(61)
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Putting (58) and (61) into (34) yields the dyadic
(electric) far-field Green’s function (different from
that used by Chen [1983, p. 382, equation (10.82)] for
the electric far field of an electric dipole) directly
from Kw space,

G ggi,far(R, w)

VL Rx &) (R x &) exp [joR/cy,(R)]

_ ] o , 62
Co R X é)z 47TR/Cgr,o(R) ( )
G (R, w) = DI (R)GI ™R, 0),  (63)
Guni,far(R ) =}_ €| . (euni)—l
€e ’ o \/; 1 r
[cgre(R)]?
- e (e T RR - (™) 7
Co
(R X &)(R x &)) exp [joR/cg,(R)] 61
(R X é)z 47TR/Cgr,e(R) ( )
unl far(R w) Dg’r;ifar(R)Gum far(R, w)’ (65)

with the group velocities ¢, , and cg,,e(ﬁ) defined in
(40) and (41).

Of course, the far-field representations (62)—(65)
can be also derived from Chen’s formulas (36)—(39)
for kyR >> 1.

Homogeneous Biaxial Media

For biaxial media the differential equation for
Green’s dyadic reads,

(VV — Al — k2e?) - GY(R — R’, w) = I6(R ~ R’)  (66)
with the relative permittivity tensor
el =gl + (e3 — &) sym {&;&,} (67)

and the two optlcal axes €¢; and ¢,. The permittivity
constants g; are given according to e = ¢g;e;e;. The
operator “sym{¢;¢&,}” denotes the symmetric part of
the dyadic ¢,¢,. In general, the symmetric and anti-
symmetric part of a dyadic (e.g., A = ab) reads, A =
sym {A} + asym {A} = sym {ab} + asym {ab} with
sym {A} = sym {ab} =3 (ab + ba) and asym {A} =
asym {ab} = > (ab - ba)
The wave dyadlc for biaxial media is given by

WK, ) = (K * K — kie;)l — KK

+ (87 — €3)k¢ sym {182} (68)
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zy plane at z = 0:
(a) Group velocity surfaces

yz plane at z = 0:
Group velocity surfaces
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zz plane at y = 0:
Group velocity surfaces

ot

Figure 4. A biaxial medium with g,, =

€0, ryy

= 4eg, &;,, = 2.25¢¢, and g,;; = 0 for i # j. (a)

Group velocity surfaces of the two extraordinary modes el and e2. (b) Three-dimensional EMFIT
snapshots at time point ¢ = ¢y = 200At of E , in the xy plane at z = 0 and in the yz plane at x = 0,
and of £y in the xz plane aty = 0 radiated by an electric dipole given by J, (R, £) = frco(£) 8(R)p with

A

p = e, and a center frequency of f, = 10 GHz. EMFIT parameters are spatial domain size, 40 cm X

40 cm X 40 cm; uniform grid with mesh width Ax = 2 mm; total grid size, 2003 voxels = 2013 nodes;
time step width, At = 0.5Ax/cy = 3.33 ps. The applied 3-D EMFIT code is of second order in time

and space.

For the biaxial case, we only confirm numerically the
fact that plane wave group velocity surfaces represent
wave fronts in the time domain. Figure 4 shows the
coincidence of the analytically obtained group veloc-
ity diagram with the time domain snapshots of the
electric field computed by the 3-D EMFIT code. Here
we calculated especially the nonzero spherical com-
ponents Eg, E 5, and E ;, via coordinate transform of
the Cartesian components E,, E,, and E, obtained
by the 3-D EMFIT code.

Green’s Dyadics in Elastodynamics

For unbounded homogeneous, lossless anisotropic
media with the mass density at rest p, and the
compliance tensor s the governing equations of linear
elastodynamics, Cauchy’s equation of motion and the
equation of deformation rate [e.g., van der Hijden,

1987], read with time dependence ~ exp (—jwt)
—jopov(R, w) =V * T(R, w) + f(R, w), (69)
~jws: T(R, 0) = sym {Vv(R, )} + h(R, w), (70)

with the constitutive relations

p(Ra (l)) = pOV(R, (l)), (71)

SR, w) =s:T(R, ). (72)
The vector and tensor fields v, T, f, h, p, and S are
particle velocity vector, stress tensor (stress dyadic),
volume force density vector, source of deformation
rate dyadic, momentum density vector, and deforma-
tion tensor (deformation dyadic). The colon denotes
the double-scalar product with the property ab:ed =
(a - d)(b - ¢). (This notation was introduced by Ben-
Menahem and Singh [1981], and differs from that used
in electromagnetics by such investigators as Gibbs
[1913], Lindell [1992], and Weiglhofer [1993].)

The volume source density of a point force is
defined by [Ben-Menahem and Singh, 1981]

f(R, 0) = f(w)8(R)f, (73)

where f(w) is the Fourier spectrum and fis a unit vector.
The radiated particle displacement field (u(R, 0) =
—v(R, w)/jw) of the point force is represented by

u(R, 0) = J Gu(R-R’, 0) * f(R’, w)d°R’, (74)
o
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u(R, 0) = f(w)Gu(R, ) * f, (75)

where G, is the dyadic (particle displacement)
Green’s function. The far field of the radiated particle
displacement is determined by

uiso,far(R, w) ___f(w)Glilso,far(R’ w) * f, (76)

which can be used to evaluate radiation pattern of the
point force. The knowledge of the far-field Green’s
function is mandatory for the evaluation of the radi-

ation pattern of an “ultrasonic antenna” [e.g., Spiess,
1994b].

Homogeneous Isotropic Media

For homogeneous isotropic media the differential
equation for the dyadic Green’s functions is

(V-c-V+ w2l Gy(R-R’, w) = —I8(R—R')
(77)
with the stiffness tensor

Ci%0 = All + (11532 + 111392, (78)

which is the inverse of the compliance tensor s**°,
where the upper indical notation indicates transposi-
tion of elements, e.g., I1134? = {Sijﬁkleiejekel}B“ =
3;j0ke;eee; = ;8 e;ee e with summation con-
vention understood, and A and u are Lamé’s param-
eters. The elastodynamic wave dyadic becomes the
form

WK, ) =—(\ + w)KK + (—uK * K + pgo?)l.  (79)

The inversion of this wave dyadic [e.g., Fellinger, 1991]
yields the elastodynamic dyadic (particle displace-
ment) Green’s function in Kw space

1 1

KK
p0w2 Kz_kj

GE(K, w) =

1 2
+—2(ks| - KK)

—, 80
pow K?—k} (80)
G(K, 0) = DK, 0)G (K, w)

+ D, 5 (K, ©)GUK, 0), (81)

where k, = w/cp,, and kg = o/cp, o are the
wave numbers with the phase velocities cpp , =
V(A + 2u)/pg and cpy s = Vu/pg of the pressure
(p) and shear wave (s) for isotropic media. In Row
space the dyadic Green’s function takes the form

1927
. 1 exp (JoR/cph p)
GER, w) = — ——5 WV P
pow 47R
1 exp (joR/cph,s)
+—— (KA + VvV : 2
powz( s ) 4nR (82)
G (R, w) = DIV, 0)G (R, w)
+ DUV, 0)G AR, o). (83)

Introducing the far-field approximation K f% kR,
. far ;" A N n
n=p,sin(80)orV éjknR, n = p, s in (82), we
obtain the dyadic far-field Green’s function

RR exp (joR/cpn, p)

Giso,far(R, w) -
! POC o 4mR

| + RR exp (JoR/cph,s)
4mR

+

2 (84)
pocph,s

Glilso,far — Dii(;far(ﬁ)Glii(;,’far(R, m)

+ DEYRI(R)G O™ (R, w). (85)

The far-field representation (84) can then be used for
the development of an elastodynamic Kirchhoff-type
inverse scattering algorithm based on Huygens inte-
grals [Langenberg et al., 1993]. For the formulation of
the Huygens integral a triadic Green’s function must
be derived from the dyadic Green’s function [e.g.,
Fellinger, 1991].

Homogeneous Transversely Isotropic Media

In elastodynamics, except for isotropic media, no
closed-form analytical solutions for dyadic and triadic
Green’s functions in Rw space are available. Never-
theless, for example, transversely isotropic media like
austenitic steel or unidirectional fiber-reinforced
composites are of practical interest today. Because of
the complex physics of elastodynamic waves in such
media, there is a definite need for analytic solutions in
order to get a better understanding from a theoretical
point of view. The stiffness tensor for transversely
isotropic media, it is the same as for hexagonal
crystals, reads in coordinate-free form [e.g., Fellinger
et al., 1995],

cli = (cy — 2c5)ll + cs(1113%4 4+ 111342
+ [c1 + ¢3 — 2(c3 + 2c4) iararhih
+ (c3 — ¢ + 2¢5) (I + ) + (¢4 — Ccs)

< (Ifuh B2 + Imm B2 + mml B2 + mmlB342),  (86)
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wherec; (i = 1, -+, 5) are the five elastic constants
and m denotes the unit vector perpendicular to which
isotropy holds, which refers to the “fiber direction.”
For transversely isotropic media the wave dyad and
the dyadic and triadic Green’s functions in Kw space
have been derived by Spies [1994a]. The wave dyad
reads, for transversely isotropic media,

WU(K, w) = al + BKK + yiih + 2¢ sym {Ki} (87)
with

a=c5K2+ (cqg —cs5)(mhr ¢ K)Z—Powz, (88)

ﬁ = Cp — Cs, (89)

y=1[c1 + ¢z = 2(c3 + 2c4)]( * K)? + (c4 — ¢c5)K?,

(90)
€=[c3+c4—(c2 — cs5)](x * K). (91)
Then the dyadic Green’s function is given by
GU(K, 0) = ), G (K, 0), =qP,qSV,SH (92)
n
GYK, w) = 2 DY (K, 0)GY (K, ), (93)
=gqP, qSV, SH
with
_ & BKK + ymr + 2e sym {Km}
Bl (K, w) = 2 | + 4
’ Cs CoCy
(1 = 8,sm)(1 — Sush)
X D 2 k2
K#7 K n
(By — €)[KK + K%ih — 2(fh * K) sym {Krh}]
C2C4C5s
[] ! P, qSV, SH (94)
° 2—7 s K = q s q ) 5
e K= K5
. 1
G, 0) = 25— K (95)

éfli(K, w) decomposes into a quasi-pressure gP, a
quasi-shear vertical ¢SV, and a pure shear horizontal
wave SH (for an arbitrary anisotropic medium it
separates into three quasi-waves called quasi-pressure
gP, quasi-shear first gS1, and quasi-shear second ¢S2
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[van der Hijden, 1987]). The determination of the 3-D
inverse Fourier transform of Gl (K, w) is not possible,
since the resulting Fourier 1ntegra1s cannot be solved
analytically. Up to now, no analytical closed-form
solutions of the dyadic and triadic Green’s functions
in Rw space are available. However, for transversely
isotropic media explicit analytic expressions for wave
numbers, slownesses, group velocity vectors, and ray
vectors for the three modes can be evaluated [e.g.,
Spies, 1994a; Fellinger et al., 1995]. For example, for
the transversely isotropic medium austenitic steel
308SS, Figure 5 compares group velocity surfaces of
the three modes with wave front snapshots of |v| =
Vo + vl + v calculated with the 3-D elastody-
namic finite integration technique (EFIT) code [Fell-
inger et al., 1995; Marklein et al., 1996] for a transient
point force excitation with an RC2 time history. The
EFIT code is the elastodynamic pendant of the
EMFIT code. The point force and fiber direction are
horizontally oriented, i.e., f=m= e,. Because f= m,
the SH mode is not excited. Again, the group velocity
surfaces coincide with the EFIT wave fronts. This
reveals that also in elastodynamics the phase and
amplitude of the scalar Green’s function fon(R t)
for each mode m is defined by the pertinent group
velocity ¢!

grn

Conclusion

For electromagnetics and elastodynamics we have
illustrated via comparison of analytic and numerical
results that the group velocity diagrams are represent-
ing wave fronts in the time domain. We have shown
for electromagnetic uniaxial media that the dyadic
Green’s function always separates into a dyadic pref-
actor and a scalar Green’s function, and the phase
and amplitude of the scalar Green’s function is de-
termined by the group velocity. Then we have shown
that one can derive the far field in Rw space from Ko
space directly if the far-field identification for the
wave vector K for each mode is known. This has been
demonstrated analytically for the electromagnetic un-
iaxial case using the duality principle.

In addition, according to the procedure in the
electromagnetic uniaxial and biaxial case, we make
the following conjecture for elastodynamic anisotro-
pic media: if we know the dyadic Green’s function in
Ko space and the far-field identification for the wave
vector K, for each mode 7 as a result of the duality
principle between the wave vector K and ray vector 1,
then the dyadic far-field Green’s function can be
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zy plane at z=0:
(a) Group velocity surfaces

yz plane at z = 0:
Group velocity surfaces
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zz plane at y = 0:

- ¢S
v
!

Group velocity surfaces

qP

(b) 3-D EFIT|v]| snapshot

3-D EFIT |v| snapshot

3-D EFIT|v| snapshot

Figure 5. Transversely isotropic medium austenitic steel 308SS with | = e, and the material
parameters 1= 216 GPa, ¢, = 262.75 GPa, c; = 145 GPa, ¢, = 129 GPa, c5 = 82.5 GPa, and
= 7800 kg/m3. (a) Group velocity surfaces of the three modes gP, ¢SV, and SH. (b) Three-

dlmensmnal EFIT |v| snapshots of wave fronts at time point ¢ = t; =

230At radiated by a point force

given by (R, 1) = frea(t) 8(R)f with f = e, and a center frequency of f, = 4 MHz. EFIT parameters
are spatlal domain s1ze, 2 cm X 2 cm X 2 cm; uniform grid with mesh width Ax = 100 pm; total grid
size, 200° voxels = 201° nodes; time step width, At = 0.45Ax/5850.71 s/m = 7.69 ns. The applied 3-D
EFIT code is of second order in time and fourth order in space.

derived from Kw space without carrying out the 3-D
inverse Fourier transform G(R, ») —0 W™ (K, )
analytically.
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